Secure Secret Key Distribution and Storage in Wireless Sensor Networks

Author(s):  
Juliano F. Kazienko ◽  
Célio V.N. Albuquerque
2021 ◽  
pp. 2150009
Author(s):  
Monjul Saikia

The security of wireless sensor networks is a significant concern and can be achieved by the application of cryptographic algorithms. The symmetric key encryption techniques are widely used cryptographic mechanisms for the security of sensor networks due to its low computational complexity. A symmetric key encryption technique requires a secret key to be shared between both parties for confidential communication. In a wireless sensor network, it is difficult to know which node is going to be in its communication range at the deployment phase. If prior knowledge of sensor location exists, it is an added advantage and helps in the distribution of secret keys among nodes. Even if with the expected location information, distributing the keys properly among the nodes is a challenging task. A proper algorithm must be used so that it gives the adequate utilization of the distributed keys with a minimal number of keys per sensor node. In this paper, we propose a location-dependent key distribution scheme. We use Delaunay Triangulation for the efficient distribution of keys among sensor nodes. The method gives a high probability of secure communication links among nodes with high resilience to the network.


2011 ◽  
Vol 14 (1) ◽  
Author(s):  
Juliano F. Kazienko ◽  
Igor G. Ribeiro ◽  
Igor M. Moraes ◽  
Célio V. N. Albuquerque

TinyOS is a major platform broadly used to carry out experiments related to Wireless Sensor Networks (WSNs). A number of researchers claim that cryptographic mechanisms demand plenty of resources from sensors. In this context, an important issue is to develop lightweight encryption mechanisms capable of running in resource-constrained sensors. The main contribution of this work is to carry out an experimental evaluation of a secure key distribution and storage scheme in a WSN using simulation and practical experiments. Through simulation, we verify that this scheme introduces very low processing overhead, in the order of nanoseconds, when compared to existing approaches. Additionally, practical measurements indicate that the scheme can be deployed by off-the-shelf sensor platforms, such as MicaZ and TelosB. The performance metrics considered are the processing time of encryption and decryption functions, the application memory requirements and the power consumption. We have also evaluated several functionalities of the scheme on a real testbed. In summary, this work demonstrates the practical feasibility of implementing such scheme in real sensor networks.


2010 ◽  
Vol 159 ◽  
pp. 29-34
Author(s):  
Shu Ming Xiong ◽  
Xiao Qian Qu ◽  
Yong Zhao Zhan ◽  
Xin Sheng Wang ◽  
Liang Min Wang

Due to the node failures incurred by intrusion threat, a wireless sensor networks will initiate topology re-generation, which is based on correct availability evaluation of current intrusion-tolerant topology. The paper proposes an availability evaluation model based on semi-Markov process (SMP) to estimate topology availability of the intrusion-tolerant topology concerning the effects from intrusion behaviors. In view of some limitations of node computation ability and storage ability, this model reduces the complexities resulting from modeling the different intrusion threats and is set up on the uniform intruding results to simplify the model design. Using the DTMC model embedded in SMP topology availability is computed and finally we analyze the sensitivity to parameters in the model.


Author(s):  
SHANTALA DEVI PATIL ◽  
VIJAYAKUMAR B P

In Wireless Sensor Networks, Broadcast communication is the most fundamental and prevailing communication pattern. Securing the broadcast messages from the adversary is critical issue. To defend the WSNs against the adversary attacks of impersonation of a broadcast source or receiver, modification/fabrication of the broadcast message, attacker injecting malicious traffic to deplete the energy from the sensors, broadcast authentication of source and receivers becomes extremely inevitable. In this paper, we propose a novel ECC based public key distribution protocol and broadcast authentication scheme. The proposed method provides high security and has low overhead.


Sign in / Sign up

Export Citation Format

Share Document