A Time-of-Flight On-Robot Proximity Sensing System to Achieve Human Detection for Collaborative Robots

Author(s):  
Odysseus Alexander Adamides ◽  
Anmol Saiprasad Modur ◽  
Shitij Kumar ◽  
Ferat Sahin
Author(s):  
Fahad Iqbal Khawaja ◽  
Akira Kanazawa ◽  
Jun Kinugawa ◽  
Kazuhiro Kosuge

Human-Robot Interaction (HRI) for collaborative robots has become an active research topic recently. Collaborative robots assist the human workers in their tasks and improve their efficiency. But the worker should also feel safe and comfortable while interacting with the robot. In this paper, we propose a human-following motion planning and control scheme for a collaborative robot which supplies the necessary parts and tools to a worker in an assembly process in a factory. In our proposed scheme, a 3-D sensing system is employed to measure the skeletal data of the worker. At each sampling time of the sensing system, an optimal delivery position is estimated using the real-time worker data. At the same time, the future positions of the worker are predicted as probabilistic distributions. A Model Predictive Control (MPC) based trajectory planner is used to calculate a robot trajectory that supplies the required parts and tools to the worker and follows the predicted future positions of the worker. We have installed our proposed scheme in a collaborative robot system with a 2-DOF planar manipulator. Experimental results show that the proposed scheme enables the robot to provide anytime assistance to a worker who is moving around in the workspace while ensuring the safety and comfort of the worker.


2013 ◽  
Vol 52 (03) ◽  
pp. 239-249 ◽  
Author(s):  
H. Noma ◽  
C. Naito ◽  
M. Tada ◽  
H. Yamanaka ◽  
T. Takemura ◽  
...  

SummaryObjective: Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors.Methods: The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Blue-tooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis.Results: The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system’s “confidence”, i.e. the probability of estimation error, must be effective to reduce the oversights.Conclusions: This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.


Computers ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Qingquan Sun ◽  
Ju Shen ◽  
Haiyan Qiao ◽  
Xinlin Huang ◽  
Chen Chen ◽  
...  

2002 ◽  
Vol 68 (9) ◽  
pp. 1206-1210
Author(s):  
Hiroshi HARADA ◽  
Mitsuji KAWANO ◽  
Teruo YAMAGUCHI ◽  
Atsuhiko NODA

Author(s):  
Thomas M. Wendt ◽  
Urban B. Himmelsbach ◽  
Matthias Lai ◽  
Matthias Waßmer

Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.


Sign in / Sign up

Export Citation Format

Share Document