A control system for battery current sharing in DC microgrids with DC bus voltage restoration

Author(s):  
Wagner Coelho Leal
2018 ◽  
Vol 8 (10) ◽  
pp. 1966 ◽  
Author(s):  
Kaitlyn Bunker ◽  
Michael Cook ◽  
Wayne Weaver ◽  
Gordon Parker

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around a nominal value, and still avoiding the need for communication between the various components.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3422
Author(s):  
Daojun Zha ◽  
Qingsong Wang ◽  
Ming Cheng ◽  
Fujin Deng ◽  
Giuseppe Buja

DC electric springs (DCESs) have been recently developed to improve the voltage stability of a DC microgrid. A lately proposed DCES topology is comprised of a DC/DC three port converter (TPC), a bi-directional buck-boost converter (BBC) and a battery, and is arranged as follows: The TPC input port is fed by a renewable energy source (RES) whilst the two TPC output ports supply a non-critical load (NCL) and a critical load (CL) separately; in turn, BBC together with the battery constitutes the DCES energy storage unit (ESU) and is connected in parallel to CL. In this paper, a set of DCESs with such a topology and with their CLs connected to a common DC bus is considered. The control of the DCESs is built up around a distributed cooperative system having two control levels, namely primary and secondary, each of them endowed with algorithms committed to specific tasks. The structure of the control levels is explicated and their parameters are designed. The control system is applied to a DCES set taken as a study-case and tested by simulation. The results of the tests show the excellent performance of the control system in both regulating the CL DC bus voltage and keeping the state-of-charge of the battery within predefined limits.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650132 ◽  
Author(s):  
Murat Karabacak

In this study, a new nonlinear and adaptive state feedback controller is proposed for the control of grid connected inverters (GCIs). All the other parameters apart from direct current (DC) bus capacitor are considered uncertain in the design of proposed controller, without disadvantages of singularity and over-parametrization. Three-phase source currents, DC bus voltage and load current are supposed to be available for feedback in the closed loop control system. In this respect, the whole control loop, consisting of DC bus voltage and [Formula: see text]–[Formula: see text] axis current loops, is closed. It is important to highlight that closed loop DC voltage control cannot be achieved by most of nonlinear controllers proposed in literature. In the sense of Lyapunov stability theory, overall control system has the global asymptotic stability. Experimental results demonstrate that the proposed controller guarantees to asymptotically drive tracking errors to zero despite all parameter and external disturbance uncertainties. Results also verify that the proposed controller shows high performance and feasibility.


Sign in / Sign up

Export Citation Format

Share Document