A Memory Optimized Aggregated Bit Vector Algorithm for large rule-sets

Author(s):  
Jyotsna Dhumale ◽  
Uday Trivedi
Keyword(s):  
2019 ◽  
Vol 28 (14) ◽  
pp. 1950237
Author(s):  
Ling Zheng ◽  
Zhiliang Qiu ◽  
Weina Wang ◽  
Weitao Pan ◽  
Shiyong Sun ◽  
...  

Network flow classification is a key function in high-speed switches and routers. It directly determines the performance of network devices. With the development of the Internet and various kinds of applications, the flow classification needs to support multi-dimensional fields, large rule sets, and sustain a high throughput. Software-based classification cannot meet the performance requirement as high as 100 Gbps. FPGA-based flow classification methods can achieve a very high throughput. However, the range matching is still challenging. For this, this paper proposes a range supported bit vector (RSBV) method. First, the characteristic of range matching is analyzed, then the rules are pre-encoded and stored in memory. Second, the fields of an input packet header are used as addresses to read the memory, and the result of range matching is derived through pipelined Boolean operations. On this basis, bit vector for any types of fields (AFBV) is further proposed, which supports the flow classification for multi-dimensional fields efficiently, including exact matching, longest prefix matching, range matching, and arbitrary wildcard matching. The proposed methods are implemented in FPGA platform. Through a two-dimensional pipeline architecture, the AFBV can operate at a high clock frequency and can achieve a processing speed of more than 100 Gbps. Simulation results show that for a rule set of 512-bit width and 1[Formula: see text]k rules, the AFBV can achieve a throughput of 520 million packets per second (MPPS). The performance is improved by 44% compared with FSBV and 30% compared with Stride BV. The power consumption is reduced by about 43% compared with TCAM solution.


2021 ◽  
Vol 9 (2) ◽  
pp. 125-130
Author(s):  
Sandeep Kakde, Et. al.

The categorization of incoming packets can be considered as a classification based on the fields of the different headers, such as the source-Internet protocol, the target-Internet protocol, the source-port, destination-port and protocol fields. It requires that each packet is compared with rules and each packet is forwarded to the highest priority matching rule. Packet classification performance also depends on the rule sets. The required storage depends generally on the number of rules and the size of the method. In this paper, we described a Modular Field Split Bit-Vector (FSBV) algorithm, with which the Field Programmable Gate Array (FPGA) classification of packets is performed using Xilinx ISE13.1 software, with a few predefined rules. From the results obtained through EDA tools, it can be concluded that the proposed technique is memory-efficient and latency aware.


2019 ◽  
Author(s):  
Sawyer Reid stippa ◽  
George Petropoulos ◽  
Leonidas Toulios ◽  
Prashant K. Srivastava

Archaeological site mapping is important for both understanding the history as well as protecting them from excavation during the developmental activities. As archaeological sites generally spread over a large area, use of high spatial resolution remote sensing imagery is becoming increasingly applicable in the world. The main objective of this study was to map the land cover of the Itanos area of Crete and of its changes, with specific focus on the detection of the landscape’s archaeological features. Six satellite images were acquired from the Pleiades and WorldView-2 satellites over a period of 3 years. In addition, digital photography of two known archaeological sites was used for validation. An Object Based Image Analysis (OBIA) classification was subsequently developed using the five acquired satellite images. Two rule-sets were created, one using the standard four bands which both satellites have and another for the two WorldView-2 images their four extra bands included. Validation of the thematic maps produced from the classification scenarios confirmed a difference in accuracy amongst the five images. Comparing the results of a 4-band rule-set versus the 8-band showed a slight increase in classification accuracy using extra bands. The resultant classifications showed a good level of accuracy exceeding 70%. Yet, separating the archaeological sites from the open spaces with little or no vegetation proved challenging. This was mainly due to the high spectral similarity between rocks and the archaeological ruins. The satellite data spatial resolution allowed for the accuracy in defining larger archaeological sites, but still was a difficulty in distinguishing smaller areas of interest. The digital photography data provided a very good 3D representation for the archaeological sites, assisting as well in validating the satellite-derived classification maps. All in all, our study provided further evidence that use of high resolution imagery may allow for archaeological sites to be located, but only where they are of a suitable size archaeological features.


1998 ◽  
Author(s):  
Clark W. Barrett ◽  
David L. Dill ◽  
Jeremy R. Levitt

Author(s):  
Mohammad Mehdi Pourhashem Kallehbasti ◽  
Matteo Giovanni Rossi ◽  
Luciano Baresi
Keyword(s):  

2000 ◽  
Vol 112 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Ching-Hung Wang ◽  
Tzung-Pei Hong ◽  
Shian-Shyong Tseng

Author(s):  
Shou-Heng Huang ◽  
Ron M. Nelson

Abstract A feedforward, three-layer, partially-connected artificial neural network (ANN) is proposed to be used as a rule selector for a rule-based fuzzy logic controller. This will allow the controller to adapt to various control modes and operating conditions for different plants. A principal advantage of an ANN over a look up table is that the ANN can make good estimates to fill in for missing data. The control modes, operating conditions, and control rule sets are encoded into binary numbers as the inputs and outputs for the ANN. The General Delta Rule is used in the backpropagation learning process to update the ANN weights. The proposed ANN has a simple topological structure and results in a simple analysis and relatively easy implementation. The average square error and the maximal absolute error are used to judge if the correct connections between neurons are set up. Computer simulations are used to demonstrate the effectiveness of this ANN as a rule selector.


Sign in / Sign up

Export Citation Format

Share Document