Adaptive Visual Inspection Method for Transparent Label Defect Detection of Curved Glass Bottle

Author(s):  
Wei Gong ◽  
Kunbo Zhang ◽  
Chengwu Yang ◽  
Mingdong Yi ◽  
Jun Wu
Author(s):  
Xuefeng Zhao ◽  
Shengyuan Li ◽  
Hongguo Su ◽  
Lei Zhou ◽  
Kenneth J. Loh

Bridge management and maintenance work is an important part for the assessment the health state of bridge. The conventional management and maintenance work mainly relied on experienced engineering staffs by visual inspection and filling in survey forms. However, the human-based visual inspection is a difficult and time-consuming task and its detection results significantly rely on subjective judgement of human inspectors. To address the drawbacks of human-based visual inspection method, this paper proposes an image-based comprehensive maintenance and inspection method for bridges using deep learning. To classify the types of bridges, a convolutional neural network (CNN) classifier established by fine-turning the AlexNet is trained, validated and tested using 3832 images with three types of bridges (arch, suspension and cable-stayed bridge). For the recognition of bridge components (tower and deck of bridges), a Faster Region-based Convolutional Neural Network (Faster R-CNN) based on modified ZF-net is trained, validated and tested by utilizing 600 bridge images. To implement the strategy of a sliding window technique for the crack detection, another CNN from fine-turning the GoogLeNet is trained, validated and tested by employing a databank with cropping 1455 raw concrete images into 60000 intact and cracked images. The performance of the trained CNNs and Faster R-CNN is tested on some new images which are not used for training and validation processes. The test results substantiate the proposed method can indeed recognize the types and components and detect cracks for a bridges.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4812
Author(s):  
Marcella Grosso ◽  
Isabel C. P. Margarit-Mattos ◽  
Gabriela R. Pereira

The use of anticorrosive coatings has been a powerful method to be applied on the surface of metallic materials to mitigate the corrosive process. In this study, the focus is composite coatings that are commonly used on the internal surface of storage tanks in petrochemical industries. The development of non-destructive methods for inspection of faults in this field is desired due to unhealthy access and mainly because undercoating corrosion is difficult to detect by visual inspection. Pulsed thermography (PT) was employed to detect undercoating corrosion and adhesion loss of anticorrosive composite coatings defects. Additionally, a computational simulation model was developed to complement the PT tests. According to the experimental results, PT was able to detect all types of defects evaluated. The results obtained by computational simulation were compared with experimental ones. Good correlation (similarity) was verified, regarding both the defect detection and thermal behavior, validating the developed model. Additionally, by reconstructing the thermal behavior according to the defect parameters evaluated in the study, it was estimated the limit of the remaining thickness of the defect for which it would be possible to obtain its detection using the pulsed modality.


2011 ◽  
Vol 81 (19) ◽  
pp. 2033-2042 ◽  
Author(s):  
A. S. Tolba

The automated visual inspection of homogeneous flat surface products is a challenging task that needs fast and accurate algorithms for defect detection and classification in real time. Multi-directional and Multi-scale approaches, such as Gabor Filter Banks and Wavelets, have high computational cost in addition to their average performance in defect characterization. This paper presents a novel implementation of a neighborhood-preserving approach for the fast and accurate inspection of fine-structured industrial products using a new neighborhood-preserving cross-correlation feature vector. The fast and noise immune Probabilistic Neural Network (PNN) classifier has been found to be very suitable for defect detection in homogeneous non-patterned surfaces with acceptable slight variations, such as textile fabrics. A defect detection accuracy of 99.87% has been achieved with 99.29% recall/sensitivity and 99.91% specificity. The discriminant power shows how well the PNN classifier discriminates between normal and abnormal surfaces. The experimental results show that the proposed system outperforms the Gabor function-based techniques.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877394 ◽  
Author(s):  
Ye Han ◽  
Zhigang Liu ◽  
DJ Lee ◽  
Wenqiang Liu ◽  
Junwen Chen ◽  
...  

Maintenance of catenary system is a crucial task for the safe operation of high-speed railway systems. Catenary system malfunction could interrupt railway service and threaten public safety. This article presents a computer vision algorithm that is developed to automatically detect the defective rod-insulators in a catenary system to ensure reliable power transmission. Two key challenges in building such a robust inspection system are addressed in this work, the detection of the insulators in the catenary image and the detection of possible defects. A two-step insulator detection method is implemented to detect insulators with different inclination angles in the image. The sub-images containing cantilevers and rods are first extracted from the catenary image. Then, the insulators are detected in the sub-image using deformable part models. A local intensity period estimation algorithm is designed specifically for insulator defect detection. Experimental results show that the proposed method is able to automatically and reliably detect insulator defects including the breakage of the ceramic discs and the foreign objects clamped between two ceramic discs. The performance of this visual inspection method meets the strict requirements for catenary system maintenance.


Sign in / Sign up

Export Citation Format

Share Document