PLDSRC: A Multi-threaded Compressor/Decompressor for Massive DNA Sequencing Data

Author(s):  
Ke Zhan ◽  
Chao Yang ◽  
Changyou Zhang ◽  
Jingjing Zheng ◽  
Ting Wang
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leah L. Weber ◽  
Mohammed El-Kebir

Abstract Background Cancer arises from an evolutionary process where somatic mutations give rise to clonal expansions. Reconstructing this evolutionary process is useful for treatment decision-making as well as understanding evolutionary patterns across patients and cancer types. In particular, classifying a tumor’s evolutionary process as either linear or branched and understanding what cancer types and which patients have each of these trajectories could provide useful insights for both clinicians and researchers. While comprehensive cancer phylogeny inference from single-cell DNA sequencing data is challenging due to limitations with current sequencing technology and the complexity of the resulting problem, current data might provide sufficient signal to accurately classify a tumor’s evolutionary history as either linear or branched. Results We introduce the Linear Perfect Phylogeny Flipping (LPPF) problem as a means of testing two alternative hypotheses for the pattern of evolution, which we prove to be NP-hard. We develop Phyolin, which uses constraint programming to solve the LPPF problem. Through both in silico experiments and real data application, we demonstrate the performance of our method, outperforming a competing machine learning approach. Conclusion Phyolin is an accurate, easy to use and fast method for classifying an evolutionary trajectory as linear or branched given a tumor’s single-cell DNA sequencing data.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1419 ◽  
Author(s):  
Jose E. Kroll ◽  
Jihoon Kim ◽  
Lucila Ohno-Machado ◽  
Sandro J. de Souza

Motivation.Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background.Results.A software suite namedSplicing Expresswas created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills.Splicing Expressperforms automatic annotation of transcriptome data (GTF files) using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool namedSplooce. As a final result,Splicing Expresscreates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show thatSplicing Expressis able to perform all tasks in a straightforward way, identifying well-known specific events.Availability and Implementation.Splicing Expressis written in Perl and is suitable to run only in UNIX-like systems. More details can be found at:http://www.bioinformatics-brazil.org/splicingexpress.


2017 ◽  
Vol 34 (10) ◽  
pp. 1666-1671 ◽  
Author(s):  
Yang Yang ◽  
Katherine E Niehaus ◽  
Timothy M Walker ◽  
Zamin Iqbal ◽  
A Sarah Walker ◽  
...  

2018 ◽  
Vol 29 (08) ◽  
pp. 1249-1255
Author(s):  
Kamil Salikhov

Modern DNA sequencing technologies generate prodigious volumes of sequence data consisting of short DNA fragments (reads). Storing and transferring this data is often challenging. With this motivation, several specialized compression methods have been developed. In this paper, we present an improvement of the lossless reference-free compression algorithm, suggested by Rozov et al., based on the technique of cascading Bloom filters. Through computational experiments on real data, we demonstrate that our method results in a significant associated memory reduction in practice.


2020 ◽  
Vol 16 (7) ◽  
pp. e1008012 ◽  
Author(s):  
Xian F. Mallory ◽  
Mohammadamin Edrisi ◽  
Nicholas Navin ◽  
Luay Nakhleh

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrew Currin ◽  
Neil Swainston ◽  
Mark S Dunstan ◽  
Adrian J Jervis ◽  
Paul Mulherin ◽  
...  

Abstract Synthetic biology utilizes the Design–Build–Test–Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs. Next-generation sequencing is ideally positioned to perform this task, however with expensive hardware costs and bespoke data analysis requirements few laboratories utilize this technology in-house. Here a workflow for highly multiplexed sequencing is presented, capable of fast and accurate sequence verification of DNA assemblies using nanopore technology. A novel sample barcoding system using polymerase chain reaction is introduced, and sequencing data are analyzed through a bespoke analysis algorithm. Crucially, this algorithm overcomes the problem of high-error rate nanopore data (which typically prevents identification of single nucleotide variants) through statistical analysis of strand bias, permitting accurate sequence analysis with single-base resolution. As an example, 576 constructs (6 × 96 well plates) were processed in a single workflow in 72 h (from Escherichia coli colonies to analyzed data). Given our procedure’s low hardware costs and highly multiplexed capability, this provides cost-effective access to powerful DNA sequencing for any laboratory, with applications beyond synthetic biology including directed evolution, single nucleotide polymorphism analysis and gene synthesis.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiqiang Yan ◽  
Xiaohui Zhu ◽  
Yuqian Wang ◽  
Yanli Nie ◽  
Shuo Guan ◽  
...  

2011 ◽  
Vol 21 (5) ◽  
pp. 734-740 ◽  
Author(s):  
M. Hsi-Yang Fritz ◽  
R. Leinonen ◽  
G. Cochrane ◽  
E. Birney

Sign in / Sign up

Export Citation Format

Share Document