scholarly journals Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data

2017 ◽  
Vol 34 (10) ◽  
pp. 1666-1671 ◽  
Author(s):  
Yang Yang ◽  
Katherine E Niehaus ◽  
Timothy M Walker ◽  
Zamin Iqbal ◽  
A Sarah Walker ◽  
...  
2021 ◽  
Vol 1869 (1) ◽  
pp. 012093
Author(s):  
W Hadikurniawati ◽  
M T Anwar ◽  
D Marlina ◽  
H Kusumo

2018 ◽  
Author(s):  
Michael L. Chen ◽  
Akshith Doddi ◽  
Jimmy Royer ◽  
Luca Freschi ◽  
Marco Schito ◽  
...  

AbstractBackgroundThe diagnosis of multidrug resistant and extensively drug resistant tuberculosis is a global health priority. Whole genome sequencing of clinicalMycobacteriumtuberculosis isolates promises to circumvent the long wait times and limited scope of conventional phenotypic antimicrobial susceptibility, but gaps remain for predicting phenotype accurately from genotypic data.Methods and FindingsUsing targeted or whole genome sequencing and conventional drug resistance phenotyping data from 3,601Mycobacterium tuberculosisstrains, 1,228 of which were multidrug resistant, we investigated the use of machine learning to predict phenotypic drug resistance to 10 anti-tuberculosis drugs. The final model, a multitask wide and deep neural network (MD-WDNN), achieved improved high predictive performance: the average AUCs were 0.979 for first-line drugs and 0.936 for second-line drugs during repeated cross-validation. On an independent validation set, the MD-WDNN showed average AUCs, sensitivities, and specificities, respectively, of 0.937, 87.9%, and 92.7% for first-line drugs and 0.891, 82.0% and 90.1% for second-line drugs. In addition to being able to learn from samples that have only been partially phenotyped, our proposed multidrug architecture shares information across different anti-tuberculosis drugs and genes to provide a more accurate phenotypic prediction. We uset-distributed Stochastic Neighbor Embedding (t-SNE) visualization and feature importance analyses to examine inter-drug similarities.ConclusionsMachine learning is capable of accurately predicting resistant status using genomic information and holds promise in bringing sequencing technologies closer to the bedside.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leah L. Weber ◽  
Mohammed El-Kebir

Abstract Background Cancer arises from an evolutionary process where somatic mutations give rise to clonal expansions. Reconstructing this evolutionary process is useful for treatment decision-making as well as understanding evolutionary patterns across patients and cancer types. In particular, classifying a tumor’s evolutionary process as either linear or branched and understanding what cancer types and which patients have each of these trajectories could provide useful insights for both clinicians and researchers. While comprehensive cancer phylogeny inference from single-cell DNA sequencing data is challenging due to limitations with current sequencing technology and the complexity of the resulting problem, current data might provide sufficient signal to accurately classify a tumor’s evolutionary history as either linear or branched. Results We introduce the Linear Perfect Phylogeny Flipping (LPPF) problem as a means of testing two alternative hypotheses for the pattern of evolution, which we prove to be NP-hard. We develop Phyolin, which uses constraint programming to solve the LPPF problem. Through both in silico experiments and real data application, we demonstrate the performance of our method, outperforming a competing machine learning approach. Conclusion Phyolin is an accurate, easy to use and fast method for classifying an evolutionary trajectory as linear or branched given a tumor’s single-cell DNA sequencing data.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 252
Author(s):  
Laura M. Bergner ◽  
Nardus Mollentze ◽  
Richard J. Orton ◽  
Carlos Tello ◽  
Alice Broos ◽  
...  

The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely applied to viruses at the time of their discovery. Here, we characterized viral genomes detected through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) and used these data as a case study in evaluating zoonotic potential using molecular sequencing data. Of 58 detected viral families, including 17 which infect mammals, the only known zoonosis detected was rabies virus; however, additional genomes were detected from the families Hepeviridae, Coronaviridae, Reoviridae, Astroviridae and Picornaviridae, all of which contain human-infecting species. In phylogenetic analyses, novel vampire bat viruses most frequently grouped with other bat viruses that are not currently known to infect humans. In agreement, machine learning models built from only phylogenetic information ranked all novel viruses similarly, yielding little insight into zoonotic potential. In contrast, genome composition-based machine learning models estimated different levels of zoonotic potential, even for closely related viruses, categorizing one out of four detected hepeviruses and two out of three picornaviruses as having high priority for further research. We highlight the value of evaluating zoonotic potential beyond ad hoc consideration of phylogeny and provide surveillance recommendations for novel viruses in a wildlife host which has frequent contact with humans and domestic animals.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13588-e13588
Author(s):  
Laura Sachse ◽  
Smriti Dasari ◽  
Marc Ackermann ◽  
Emily Patnaude ◽  
Stephanie OLeary ◽  
...  

e13588 Background: Pre-screening for clinical trials is becoming more challenging as inclusion/exclusion criteria becomes increasingly complex. Oncology precision medicine provides an exciting opportunity to simplify this process and quickly match patients with trials by leveraging machine learning technology. The Tempus TIME Trial site network matches patients to relevant, open, and recruiting clinical trials, personalized to each patient’s clinical and molecular biology. Methods: Tempus screens patients at sites within the TIME Trial Network to find high-fidelity matches to clinical trials. The patient records include documentation submitted alongside NGS orders as well as electronic medical records (EMR) ingested through EMR Integrations. While Tempus-sequenced patients were automatically matched to trials using a Tempus-built matching application, EMR records were run through a natural language processing (NLP) data abstraction model to identify patients with an actionable gene of interest. Structured data were analyzed to filter to patients that lack a deceased date and have an encounter date within a predefined time period. Tempus abstractors manually validated the resulting unstructured records to ensure each patient was matched to a TIME Trial at a site capable of running the trial. For all high-level patient matches, a Tempus Clinical Navigator manually evaluated other clinical criteria to confirm trial matches and communicated with the site about trial options. Results: Patient matching was accelerated by implementing NLP gene and report detection (which isolated 17% of records) and manual screening. As a result, Tempus facilitated screening of over 190,000 patients efficiently using proprietary NLP technology to match 332 patients to 21 unique interventional clinical trials since program launch. Tempus continues to optimize its NLP models to increase high-fidelity trial matching at scale. Conclusions: The TIME Trial Network is an evolving, dynamic program that efficiently matches patients with clinical trial sites using both EMR and Tempus sequencing data. Here, we show how machine learning technology can be utilized to efficiently identify and recruit patients to clinical trials, thereby personalizing trial enrollment for each patient.[Table: see text]


Author(s):  
Hannah Bolinger ◽  
David Tran ◽  
Kenneth Harary ◽  
George C. Paoli ◽  
Giselle Guron ◽  
...  

Traditional microbiological testing methods are slow, and many molecular-based techniques rely on culture-based enrichment to overcome low limits of detection. Recent advancements in sequencing technologies may make it possible to utilize machine learning (ML) to identify patterns in microbiome data to potentially predict the presence or absence of pathogens. In this study, 299 poultry rinsate samples from various points in the processing chain were analyzed to determine if microbiota could inform about a sample’s risk for containing Salmonella . Samples were culture confirmed as Salmonella -positive or -negative following modified USDA MLG protocols. The culture confirmation result was used as a reference to compare with 16S sequencing data. Pre-chill samples tested positive (71/82) at a higher frequency than post-chill samples (30/217) and contained greater microbial diversity. Due to their larger sample size, post-chill samples were analyzed more deeply. Analysis of variance (ANOVA) identified a significant effect of chilling on the number of genera (p<0.001), but analysis of similarities (ANOSIM) failed to provide evidence for microbial dissimilarity between pre- and post-chill samples (p=0.001, R=0.443). Various ML models were trained using post-chill samples to predict if a sample contained Salmonella based on the samples’ microbiota pre-enrichment. The optimal model was a Random Forest-based model with a performance as follows: accuracy (88%), sensitivity (85%), specificity (90%). While the algorithms described in this paper are prototypes, these risk-based algorithms demonstrate the potential and need for further studies to provide insight alongside diagnostic tests. Combining risk-based information with diagnostic tools can help poultry processors make informed decisions to help identify and prevent the spread of Salmonella . These data add to the growing body of literature exploring novel ways to utilize microbiome data for predictive food safety.


2018 ◽  
Vol 35 (15) ◽  
pp. 2654-2656 ◽  
Author(s):  
Guoli Ji ◽  
Wenbin Ye ◽  
Yaru Su ◽  
Moliang Chen ◽  
Guangzao Huang ◽  
...  

Abstract Summary Alternative splicing (AS) is a well-established mechanism for increasing transcriptome and proteome diversity, however, detecting AS events and distinguishing among AS types in organisms without available reference genomes remains challenging. We developed a de novo approach called AStrap for AS analysis without using a reference genome. AStrap identifies AS events by extensive pair-wise alignments of transcript sequences and predicts AS types by a machine-learning model integrating more than 500 assembled features. We evaluated AStrap using collected AS events from reference genomes of rice and human as well as single-molecule real-time sequencing data from Amborella trichopoda. Results show that AStrap can identify much more AS events with comparable or higher accuracy than the competing method. AStrap also possesses a unique feature of predicting AS types, which achieves an overall accuracy of ∼0.87 for different species. Extensive evaluation of AStrap using different parameters, sample sizes and machine-learning models on different species also demonstrates the robustness and flexibility of AStrap. AStrap could be a valuable addition to the community for the study of AS in non-model organisms with limited genetic resources. Availability and implementation AStrap is available for download at https://github.com/BMILAB/AStrap. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document