A Deep Learning Model with Adaptive Learning Rate for Fault Diagnosis

Author(s):  
Xiaodong Zhai ◽  
Fei Qiao
Author(s):  
Tong Gao ◽  
Wei Sheng ◽  
Mingliang Zhou ◽  
Bin Fang ◽  
Liping Zheng

In this paper, we propose a novel fault diagnosis (FD) approach for micro-electromechanical systems (MEMS) inertial sensors that recognize the fault patterns of MEMS inertial sensors in an end-to-end manner. We use a convolutional neural network (CNN)-based data-driven method to classify the temperature-related sensor faults in unmanned aerial vehicles (UAVs). First, we formulate the FD problem for MEMS inertial sensors into a deep learning framework. Second, we design a multi-scale CNN which uses the raw data of MEMS inertial sensors as input and which outputs classification results indicating faults. Then we extract fault features in the temperature domain to solve the non-uniform sampling problem. Finally, we propose an improved adaptive learning rate optimization method which accelerates the loss convergence by using the Kalman filter (KF) to train the network efficiently with a small dataset. Our experimental results show that our method achieved high fault recognition accuracy and that our proposed adaptive learning rate method improved performance in terms of loss convergence and robustness on a small training batch.


2021 ◽  
Vol 11 (20) ◽  
pp. 9468
Author(s):  
Yunyun Sun ◽  
Yutong Liu ◽  
Haocheng Zhou ◽  
Huijuan Hu

Deep learning proves its promising results in various domains. The automatic identification of plant diseases with deep convolutional neural networks attracts a lot of attention at present. This article extends stochastic gradient descent momentum optimizer and presents a discount momentum (DM) deep learning optimizer for plant diseases identification. To examine the recognition and generalization capability of the DM optimizer, we discuss the hyper-parameter tuning and convolutional neural networks models across the plantvillage dataset. We further conduct comparison experiments on popular non-adaptive learning rate methods. The proposed approach achieves an average validation accuracy of no less than 97% for plant diseases prediction on several state-of-the-art deep learning models and holds a low sensitivity to hyper-parameter settings. Experimental results demonstrate that the DM method can bring a higher identification performance, while still maintaining a competitive performance over other non-adaptive learning rate methods in terms of both training speed and generalization.


Author(s):  
Wei Zhang ◽  
Gaoliang Peng ◽  
Chuanhao Li ◽  
Yuanhang Chen ◽  
Zhujun Zhang

Intelligent fault diagnosis techniques have replaced the time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning model can improve the accuracy of intelligent fault diagnosis with the help of its multilayer nonlinear mapping ability. This paper has proposed a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in first convolutional layer for extracting feature and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform state of the art DNN model which is based on frequency features under different working load and noisy environment.


Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 425 ◽  
Author(s):  
Wei Zhang ◽  
Gaoliang Peng ◽  
Chuanhao Li ◽  
Yuanhang Chen ◽  
Zhujun Zhang

Sign in / Sign up

Export Citation Format

Share Document