Comparison of artificial current zero impulses for a vacuum interrupter based direct current circuit breaker

Author(s):  
T. Heinz ◽  
P. Hock ◽  
V. Hinrichsen
2020 ◽  
Vol 12 (18) ◽  
pp. 7771
Author(s):  
Ryo Miyara ◽  
Akito Nakadomari ◽  
Hidehito Matayoshi ◽  
Hiroshi Takahashi ◽  
Ashraf M. Hemeida ◽  
...  

High-voltage direct current (DC) transmission systems and multi-terminal direct current transmission systems are attracting attention for expanding the grid to promote introduction of renewable energy. Fault clearing in DC systems is difficult because there is no zero point of current. Hybrid circuit breakers are suitable for fault clearing in DC systems. Conventional hybrid circuit breakers have a hard-switching path that damages the switch. Hard switching damages the device and produces emissions due to harmonic noise. A novel resonant hybrid DC circuit breaker is proposed in this paper. The proposed circuit breaker reduces the damage to the switching device using soft switching due to the current zero point. The proposed circuit breaker is compared with conventional hybrid circuit breakers using numerical simulations. Interruption times and switching types of circuit breakers were compared. The simulation results of the fault clearing characteristics of the proposed breakers show that the proposed breakers have sufficient performance and are capable of stable reconnections in multi-terminal direct current transmission systems.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


2021 ◽  
Vol 141 (11) ◽  
pp. 712-717
Author(s):  
Akira Daibo ◽  
Yoshimitsu Niwa ◽  
Naoki Asari ◽  
Wataru Sakaguchi ◽  
Yo Sasaki ◽  
...  

2005 ◽  
Vol 33 (5) ◽  
pp. 1589-1593 ◽  
Author(s):  
E.P.A. van Lanen ◽  
M. Popov ◽  
L. van der Sluis ◽  
R.P.P. Smeets

2017 ◽  
Vol 4 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Y. Guo ◽  
H. Zhang ◽  
Y. Yao ◽  
Q. Zhang ◽  
J. D. Yan

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF<sub>6</sub> and air) are studied in the present work and important gas material properties controlling the cooling strength identified.


Sign in / Sign up

Export Citation Format

Share Document