Optimal tilt angle and orientation for solar collectors in Iran

Author(s):  
Farnaz Safdarian ◽  
Mohammad Esmaeil Nazari
Keyword(s):  
Author(s):  
K. F. Fong ◽  
T. T. Chow ◽  
V. I. Hanby

There are growing initiatives to promote renewable energy in Hong Kong, particularly for solar energy. In order to encourage wider application of centralized solar water heating system for high-rise residential buildings, it is important to pursue an optimal design to get significant energy saving potential. In this regard, system optimization would be useful, as it can relate to a number of design variables of the solar water heating system such as the tilt angle and surface azimuth of the solar collectors, the storage capacity of the hot water calorifier, and the flow rate of the circulation pump set for the solar collectors. The objective function is to maximize the year-round energy saving by using the solar heating instead of conventional domestic electric heating. For the methodology of optimization, evolutionary programming, one of the paradigms of evolutionary algorithm, was applied. This has been proven to be effective for optimization problems with a non-linear and multi-dimensional nature. To generate values for the objective function, a TRNSYS plant simulation model was developed and coupled with the optimization algorithm. From the optimization results, it is suggested that the solar collectors can be installed onto the external shading devices as an integrated architectural feature, since the optimal tilt angle is 21° and relatively flat. The optimal surface azimuth is southwest 16° instead of due south. For the engineering design, both the optimal values of calorifier storage capacity and pump flow rate show that the calculations from normal design practice may not achieve an optimal performance. Therefore, an effective methodology of optimization and simulation is essential to generate an optimal design in a holistic approach.


2016 ◽  
Vol 8 (7) ◽  
pp. 654 ◽  
Author(s):  
Haixiang Zang ◽  
Mian Guo ◽  
Zhinong Wei ◽  
Guoqiang Sun

Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1272 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Mirosław Żukowski ◽  
Antonio Rodero ◽  
Ruta Bilinskiene

A solar collector market is most European countries is at the stage of continuous development, however its expansion rate differs. It shows that much more factors than only the local solar radiation is important, including a technology progress, costs, local manufactures’ engagement, an economic government support or an environmentally consciousness raising relevant to a mitigating climate change. We conducted the analysis for a public office building, with a few toilets and a social room, used by 54 people. As a primary heat source for HVAC and DHW systems an oil boiler was used, whereas solar collectors were considered as an energy source for hot water preparation. The analysis was conducted for three locations of the building: Bialystok (Poland), Cordoba (Spain) and Kaunas (Lithuania), using a simulation software delivered within the framework of VIPSKILLS project. Theoretical hot water consumption was considered as 3–7 dm3/(day person) in compliance with national recommendations. It was found that beam solar radiation share in a total radiation balance was nearly twice higher in Cordoba than in Bialystok or Kaunas. The highest efficiency (44%) was estimated in Cordoba for solar collectors installed with the tilt angle between 45–50°. In case of Bialystok and Kaunas the efficiency was lower than in Cordoba and nearly equal 40–41% and the recommended tilt angle was in a range 30– 45°.


2012 ◽  
Vol 3 (4) ◽  
pp. 99-107 ◽  
Author(s):  
Dr. Fawaz Sultan ◽  
Firas Aziz Ali ◽  
Tariq Khalid A. Razaq
Keyword(s):  

Author(s):  
Muhammad Uzair ◽  
Syed Umair Hassan Kazmi ◽  
Muhammad Uzair Yousuf ◽  
Syed Asad Ali Zaidi

To incorporate solar energy efficiently into a country, it is needed to know the optimal tilt and azimuth angle of the solar collectors' location. Also, to build a solar park, it is necessary to know the most suitable and high-energy generating place inside a country, thus saving time and money. This study analyzed collector geometry for Karachi in particular and Pakistan in general. Karachi has the potential of 339.36 kW-hr/m2/annum energy at an annually optimal fixed tilt of 26°. In case collector geometry had to be changed in Karachi, a range of 40° azimuth angle and 20° tilt angle from its maximum value is available. The power produced in this case would only have a difference of 1%. Optimal yearly and monthly tilt of most of the locations of Pakistan (300+) were calculated. Through them, it was revealed that the Optimal Tilt of Pakistan follows the value of latitude closely. Generally, changing the tilt angle monthly is recommended for areas that produce more energy, while fixed annual tilt could be suitable for low energy-producing regions. Effects of temperature were also incorporated while finding the energy produced by the photovoltaic (PV) panels.


Sign in / Sign up

Export Citation Format

Share Document