Low-Quality Video Face Recognition with Deep Networks and Polygonal Chain Distance

Author(s):  
Christian Herrmann ◽  
Dieter Willersinn ◽  
Jurgen Beyerer
1999 ◽  
Vol 10 (3) ◽  
pp. 243-248 ◽  
Author(s):  
A. Mike Burton ◽  
Stephen Wilson ◽  
Michelle Cowan ◽  
Vicki Bruce

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alice J. O’Toole ◽  
Carlos D. Castillo

Deep learning models currently achieve human levels of performance on real-world face recognition tasks. We review scientific progress in understanding human face processing using computational approaches based on deep learning. This review is organized around three fundamental advances. First, deep networks trained for face identification generate a representation that retains structured information about the face (e.g., identity, demographics, appearance, social traits, expression) and the input image (e.g., viewpoint, illumination). This forces us to rethink the universe of possible solutions to the problem of inverse optics in vision. Second, deep learning models indicate that high-level visual representations of faces cannot be understood in terms of interpretable features. This has implications for understanding neural tuning and population coding in the high-level visual cortex. Third, learning in deep networks is a multistep process that forces theoretical consideration of diverse categories of learning that can overlap, accumulate over time, and interact. Diverse learning types are needed to model the development of human face processing skills, cross-race effects, and familiarity with individual faces. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


Author(s):  
Chrisanthi Nega

Abstract. Four experiments were conducted investigating the effect of size congruency on facial recognition memory, measured by remember, know and guess responses. Different study times were employed, that is extremely short (300 and 700 ms), short (1,000 ms), and long times (5,000 ms). With the short study time (1,000 ms) size congruency occurred in knowing. With the long study time the effect of size congruency occurred in remembering. These results support the distinctiveness/fluency account of remembering and knowing as well as the memory systems account, since the size congruency effect that occurred in knowing under conditions that facilitated perceptual fluency also occurred independently in remembering under conditions that facilitated elaborative encoding. They do not support the idea that remember and know responses reflect differences in trace strength.


Sign in / Sign up

Export Citation Format

Share Document