Texture enhanced Statistical Region Merging with application to automatic knee bones segmentation from CT

Author(s):  
Michael Howes ◽  
Mariusz Bajger ◽  
Gobert Lee ◽  
Francesca Bucci ◽  
Saulo Martelli
2017 ◽  
Vol 36 (2) ◽  
pp. 65 ◽  
Author(s):  
Elaheh Aghabalaei Khordehchi ◽  
Ahmad Ayatollahi ◽  
Mohammad Reza Daliri

Lung cancer is one of the most common diseases in the world that can be treated if the lung nodules are detected in their early stages of growth. This study develops a new framework for computer-aided detection of pulmonary nodules thorough a fully-automatic analysis of Computed Tomography (CT) images. In the present work, the multi-layer CT data is fed into a pre-processing step that exploits an adaptive diffusion-based smoothing algorithm in which the parameters are automatically tuned using an adaptation technique. After multiple levels of morphological filtering, the Regions of Interest (ROIs) are extracted from the smoothed images. The Statistical Region Merging (SRM) algorithm is applied to the ROIs in order to segment each layer of the CT data. Extracted segments in consecutive layers are then analyzed in such a way that if they intersect at more than a predefined number of pixels, they are labeled with a similar index. The boundaries of the segments in adjacent layers which have the same indices are then connected together to form three-dimensional objects as the nodule candidates. After extracting four spectral, one morphological, and one textural feature from all candidates, they are finally classified into nodules and non-nodules using the Support Vector Machine (SVM) classifier. The proposed framework has been applied to two sets of lung CT images and its performance has been compared to that of nine other competing state-of-the-art methods. The considerable efficiency of the proposed approach has been proved quantitatively and validated by clinical experts as well.


Author(s):  
Jullend Gatc

Making an identification system that able to assist in obtaining, recording and organizing information is the first step in developing any kind of recording system. Nowadays, many recording systems were developed with artificial markers although it has been proved that it has many limitations. Biometrics use of animals provides a solution to these restrictions. On a cattle, biometric features contained in the cattle muzzle that can be used as a pattern recognition sample. Pattern recognition methods can be used for the development of cattle identification system utilizing biometric found on the cattle muzzle using digital image processing techniques. In this study, we proposed cattle muzzle identification method using segmentation Statistical Region Merging (SRM). This method aims to identify specific patterns found on the cattle muzzle by separating the object pattern (foreground) from unnecessary information (background) This method is able to identified individual cattle based on the pattern of it muzzle. Based on our evaluation, this method can provide good performance results. This method good performance can be seen from the precision and recall : 87% and the value of ROC : 0.976. Hopefully this research can be used to help identify cattle accurately on the recording process.


Author(s):  
F. Lang ◽  
J. Yang ◽  
L. Wu ◽  
D. Li

Multi-scale segmentation of remote sensing image is more systematic and more convenient for the object-oriented image analysis compared to single-scale segmentation. However, the existing pixel-based polarimetric SAR (PolSAR) image multi-scale segmentation algorithms are usually inefficient and impractical. In this paper, we proposed a superpixel-based binary partition tree (BPT) segmentation algorithm by combining the generalized statistical region merging (GSRM) algorithm and the BPT algorithm. First, superpixels are obtained by setting a maximum region number threshold to GSRM. Then, the region merging process of the BPT algorithm is implemented based on superpixels but not pixels. The proposed algorithm inherits the advantages of both GSRM and BPT. The operation efficiency is obviously improved compared to the pixel-based BPT segmentation. Experiments using the Lband ESAR image over the Oberpfaffenhofen test site proved the effectiveness of the proposed method.


2014 ◽  
Vol 667 ◽  
pp. 226-229
Author(s):  
Xiu Li Gong ◽  
Zhi Ming Wang

Statistical Region Merging (SRM) is an efficient image segmentation algorithm for images with noise and partial occlusion. However, due to the complexity of remote sensing image, SRM can’t give satisfactory results. This paper proposes an improved image segmentation algorithm for remote sensing image based on SRM. Firstly, 8-connexity gradient estimation models are used to obtain more precisely edges. Secondly, the dissimilarity criterion between regions is replaced by a normalized distance standard. Finally, it dynamically updates and sorts dissimilarity between regions during region merging. Experimental results show the proposed algorithm can achieve better segmentation results from coarse to fine compared with original SRM.


Sign in / Sign up

Export Citation Format

Share Document