Design for Restricted-Area and Fast Dilution using Programmable Microfluidic Device based Lab-on-a-Chip

Author(s):  
Shuaijie Ying ◽  
Sudip Roy ◽  
Juinn-Dar Huang ◽  
Shigeru Yamashita
Author(s):  
Hsiu-hung Chen ◽  
Dayong Gao

The manipulation of particles and cells in micro-fluids, such as cell suspensions, is a fundamental task in Lab-on-a-Chip applications. According to their analysis purposes in either the pre- or post-processing stage, particles/cells flowing inside a microfluidic channel are handled by means of enriching, trapping, separating or sorting. In this study, we report the use of patterning flows produced by a series of grooved surfaces with different geometrical setups integrated into a microfluidic device, to continuously manipulate the flowing particles (5 to 20 μm in diameters) of comparable sizes to the depth of the channel in ways of: 1) concentrating, 2) focusing, and 3) potential separating. The device is fabricated using soft lithographic techniques and is composed of inlets, microfluidic channels, and outlets for loading, manipulating and retrieving cell suspensions, respectively. Such fabrication methods allow rapid prototyping of micron or submicron structures with multiple layers and replica molding on those fabricated features in a clear polymer. The particles are evenly distributed in the entrance of the microchannel and illustrate the enriching, focusing, or size-selective profiles after passing through the patterning grooves. We expect that the techniques of manipulating cell suspensions from this study can facilitate the development of cell-based devices on 1) the visualization of counting, 2) the visualization of sizing, and 3) the particle separating.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Luyao Ma ◽  
Marlen Petersen ◽  
Xiaonan Lu

ABSTRACT Campylobacter spp. have been recognized as major foodborne pathogens worldwide. An increasing frequency of antibiotic-resistant pathogens, including Campylobacter spp., have been identified to transmit from food products to humans and cause severe threats to public health. To better mitigate the antibiotic resistance crisis, rapid detection methods are required to provide timely antimicrobial resistance surveillance data for agri-food systems. Herein, we developed a polymer-based microfluidic device for the identification and antimicrobial susceptibility testing (AST) of Campylobacter spp. An array of bacterial incubation chambers were created in the microfluidic device, where chromogenic medium and antibiotics were loaded. The growth of Campylobacter spp. was visualized by color change due to chromogenic reactions. This platform achieved 100% specificity for Campylobacter identification. Sensitive detection of multiple Campylobacter species (C. jejuni, C. coli, and C. lari) was obtained in artificially contaminated milk and poultry meat, with detection limits down to 1 × 102 CFU/ml and 1 × 104 CFU/25 g, respectively. On-chip AST determined Campylobacter antibiotic susceptibilities by the lowest concentration of antibiotics that can inhibit bacterial growth (i.e., no color change observed). High coincidences (91% to 100%) of on-chip AST and the conventional agar dilution method were achieved against several clinically important antibiotics. For a presumptive colony, on-chip identification and AST were completed in parallel within 24 h, whereas standard methods, including biochemical assays and traditional culture-based AST, take several days for multiple sequential steps. In conclusion, this lab-on-a-chip device can achieve rapid and reliable detection of antibiotic-resistant Campylobacter spp. IMPORTANCE Increasing concerns of antibiotic-resistant Campylobacter spp. with regard to public health emphasize the importance of efficient and fast detection. This study described the timely identification and antimicrobial susceptibility testing of Campylobacter spp. by using a microfluidic device. Our developed method not only reduced the total analysis time, but it also simplified food sample preparation and chip operation for end users. Due to the miniaturized size of the lab-on-a-chip platform, the detection was achieved by using up to 1,000 times less of the reagents than with standard reference methods, making it a competitive approach for rapid screening and surveillance study in food industries. In addition, multiple clinically important Campylobacter species (C. jejuni, C. coli, and C. lari) could be tested by our device. This device has potential for wide application in food safety management and clinical diagnostics, especially in resource-limited regions.


Lab on a Chip ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 1533 ◽  
Author(s):  
Kyungyong Choi ◽  
Jee-Yeon Kim ◽  
Jae-Hyuk Ahn ◽  
Ji-Min Choi ◽  
Maesoon Im ◽  
...  

Lab on a Chip ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 1835-1841 ◽  
Author(s):  
Flávio C. Cabrera ◽  
Antonio F. A. A. Melo ◽  
João C. P. de Souza ◽  
Aldo E. Job ◽  
Frank N. Crespilho

The preparation of controlled amounts of magnetite nanoparticles decorated with gold nanoparticles without organic solvents, surfactants, or heat treatment is presented. For this, natural-rubber-based microfluidic device (NRMD) was used as a flexible lab-on-a-chip.


2020 ◽  
Vol 114 (3) ◽  
pp. e76
Author(s):  
Amir Mokhtare ◽  
Philip Xie ◽  
Alireza Abbaspourrad ◽  
Zev Rosenwaks ◽  
Gianpiero D. Palermo

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 604
Author(s):  
Yuxin Zhang ◽  
Tim Cole ◽  
Guolin Yun ◽  
Yuxing Li ◽  
Qianbin Zhao ◽  
...  

Portability and low-cost analytic ability are desirable for point-of-care (POC) diagnostics; however, current POC testing platforms often require time-consuming multiple microfabrication steps and rely on bulky and costly equipment. This hinders the capability of microfluidics to prove its power outside of laboratories and narrows the range of applications. This paper details a self-contained microfluidic device, which does not require any external connection or tubing to deliver insert-and-use image-based analysis. Without any microfabrication, magnetorheological elastomer (MRE) microactuators including pumps, mixers and valves are integrated into one modular microfluidic chip based on novel manipulation principles. By inserting the chip into the driving and controlling platform, the system demonstrates sample preparation and sequential pumping processes. Furthermore, due to the straightforward fabrication process, chips can be rapidly reconfigured at a low cost, which validates the robustness and versatility of an MRE-enabled microfluidic platform as an option for developing an integrated lab-on-a-chip system.


2019 ◽  
Vol 139 (7) ◽  
pp. 209-216
Author(s):  
Jiaxu Wu ◽  
Yoshikazu Hirai ◽  
Ken-ichiro Kamei ◽  
Toshiyuki Tsuchiya ◽  
Osamu Tabata

Sign in / Sign up

Export Citation Format

Share Document