scholarly journals Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 604
Author(s):  
Yuxin Zhang ◽  
Tim Cole ◽  
Guolin Yun ◽  
Yuxing Li ◽  
Qianbin Zhao ◽  
...  

Portability and low-cost analytic ability are desirable for point-of-care (POC) diagnostics; however, current POC testing platforms often require time-consuming multiple microfabrication steps and rely on bulky and costly equipment. This hinders the capability of microfluidics to prove its power outside of laboratories and narrows the range of applications. This paper details a self-contained microfluidic device, which does not require any external connection or tubing to deliver insert-and-use image-based analysis. Without any microfabrication, magnetorheological elastomer (MRE) microactuators including pumps, mixers and valves are integrated into one modular microfluidic chip based on novel manipulation principles. By inserting the chip into the driving and controlling platform, the system demonstrates sample preparation and sequential pumping processes. Furthermore, due to the straightforward fabrication process, chips can be rapidly reconfigured at a low cost, which validates the robustness and versatility of an MRE-enabled microfluidic platform as an option for developing an integrated lab-on-a-chip system.

The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3898-3903 ◽  
Author(s):  
Maowei Dou ◽  
Juan Lopez ◽  
Misael Rios ◽  
Oscar Garcia ◽  
Chuan Xiao ◽  
...  

A low-cost b̲a̲ttery-powered s̲pectrophotometric s̲ystem (BASS) was developed for high-sensitivity point-of-care analysis in low-resource settings on a microfluidic chip without relying on external power supplies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fei Zhao ◽  
Eun Yeong Lee ◽  
Geun Su Noh ◽  
Jaehyup Shin ◽  
Huifang Liu ◽  
...  

Abstract Here, we describe a simple, universal protocol for use in nucleic acid testing-based pathogen diagnostics, which requires only hand-powered sample preparation, including the processes of pathogen enrichment and nucleic acid isolation. The protocol uses low-cost amine-functionalized diatomaceous earth with a 1-μm Teflon filter as a reaction matrix in both stages of the process, using homobifunctional imidoesters. Using a simple syringe as a pump, the capture efficiency for a large sample volume (<50 mL) was enhanced by up to 98.3%, and the detection limit was 1 CFU/mL, 100-fold better than that of common commercial nucleic acid isolation kit. This protocol can also be combined with commercialized 96-well filter plates for robust sample preparation. Our proposed system is robust, simple, low-cost, universal, and rapid (taking <20 min), and it works regardless of the ambient environment and sample pretreatment, requiring no electricity or instruments. Its benefits include the simplicity of producing its components and its ease of operation, and it can be readily integrated with other assays for point-of-care diagnostics.


2018 ◽  
Vol 10 (25) ◽  
pp. 3066-3073 ◽  
Author(s):  
D. Martens ◽  
P. Ramirez-Priego ◽  
M. S. Murib ◽  
A. A. Elamin ◽  
A. B. Gonzalez-Guerrero ◽  
...  

We present a low-cost integrated nanophotonic lab-on-a-chip platform suitable for point-of-care (POC) biomarker analysis.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (20) ◽  
pp. 3994-4007 ◽  
Author(s):  
L. Malic ◽  
X. Zhang ◽  
D. Brassard ◽  
L. Clime ◽  
J. Daoud ◽  
...  

A 3D magnetic trap is integrated on a polymeric microfluidic device using rapid low-cost fabrication. The device is used for efficient magnetic capture and release of bacteria conjugated to immunomagnetic nanoparticles.


2019 ◽  
Vol 4 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Zenib Aljadi ◽  
Frida Kalm ◽  
Harisha Ramachandraiah ◽  
Anna Nopp ◽  
Joachim Lundahl ◽  
...  

Abstract Background The flow cytometry-based basophil activation test (BAT) is used for the diagnosis of allergic response. However, flow cytometry is time-consuming, requiring skilled personnel and cumbersome processing, which has limited its use in the clinic. Here, we introduce a novel microfluidic-based immunoaffinity BAT (miBAT) method. Methods The microfluidic device, coated with anti-CD203c, was designed to capture basophils directly from whole blood. The captured basophils are activated by anti-FcεRI antibody followed by optical detection of CD63 expression (degranulation marker). The device was first characterized using a basophil cell line followed by whole blood experiments. We evaluated the device with ex vivo stimulation of basophils in whole blood from healthy controls and patients with allergies and compared it with flow cytometry. Results The microfluidic device was capable of capturing basophils directly from whole blood followed by in vitro activation and quantification of CD63 expression. CD63 expression was significantly higher (P = 0.0002) in on-chip activated basophils compared with nonactivated cells. The difference in CD63 expression on anti-FcεRI-activated captured basophils in microfluidic chip was significantly higher (P = 0.03) in patients with allergies compared with healthy controls, and the results were comparable with flow cytometry analysis (P = 0.04). Furthermore, there was no significant difference of CD63% expression in anti-FcεRI-activated captured basophils in microfluidic chip compared with flow cytometry. Conclusions We report on the miBAT. This device is capable of isolating basophils directly from whole blood for on-chip activation and detection. The new miBAT method awaits validation in larger patient populations to assess performance in diagnosis and monitoring of patients with allergies at the point of care.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 385 ◽  
Author(s):  
Sammer-ul Hassan ◽  
Xunli Zhang

Miniaturized quantitative assays offer multiplexing capability in a microfluidic device for high-throughput applications such as antimicrobial resistance (AMR) studies. The detection of these multiple microchannels in a single microfluidic device becomes crucial for point-of-care (POC) testing and clinical diagnostics. This paper showcases an optical flow cell for detection of parallel microchannels in a microfluidic chip. The flow cell operates by measuring the light intensity from the microchannels based on Beer-Lambert law in a linearly moving chip. While this platform could be tailored for a wide variety of applications, here we show the design, fabrication and working principle of the device. β-lactamase, an indicator of bacterial resistance to β-lactam antibiotics, especially in milk, is shown as an example. The flow cell has a small footprint and uses low-powered, low-cost components, which makes it ideally suited for use in portable devices that require multiple sample detection in a single chip.


Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Nan Xiang ◽  
Zhonghua Ni

Conventional sample preparation techniques require bulky and expensive instruments and are not compatible with next-generation point-of-care diagnostic testing. Here, we report a manually operated syringe-tip inertial microfluidic centrifuge (named i-centrifuge) for high-flow-rate (up to 16 mL/min) cell concentration and experimentally demonstrate its working mechanism and performance. Low-cost polymer films and double-sided tape were used through a rapid nonclean-room process of laser cutting and lamination bonding to construct the key components of the i-centrifuge, which consists of a syringe-tip flow stabilizer and a four-channel paralleled inertial microfluidic concentrator. The unstable liquid flow generated by the manual syringe was regulated and stabilized with the flow stabilizer to power inertial focusing in a four-channel paralleled concentrator. Finally, we successfully used our i-centrifuge for manually operated cell concentration. This i-centrifuge offers the advantages of low device cost, simple hand-powered operation, high-flow-rate processing, and portable device volume. Therefore, it holds potential as a low-cost, portable sample preparation tool for point-of-care diagnostic testing.


2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Noah Pestana ◽  
David Walsh ◽  
Adam Hatch ◽  
Paul Hahn ◽  
Glenn J. Jaffe ◽  
...  

Microfluidic fluorescence assay devices show great promise as preclinical and clinical diagnostic instruments. Normally, fluorescence signals from microfluidic chips are quantified by analysis of images obtained with a commercial fluorescence microscope. This method is unnecessarily expensive, time consuming, and requires significant operator training, particularly when considering future clinical translation of the technology. In this work, we developed a dedicated low cost fluorescence microfluidic device reader (FMDR) to read sandwich immunofluorescence assay (sIFA) devices configured to detect vascular endothelial growth factor ligand concentrations in ocular fluid samples. Using a series of sIFA calibration standards and a limited set of human ocular fluid samples, we demonstrated that our FMDR reader has similar sensitivity and accuracy to a fluorescence microscope for this task, with significantly lower total cost and reduced reading time. We anticipate that the reader could be used with minor modifications for virtually any fluorescence microfluidic device.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3519 ◽  
Author(s):  
Enxiao Luan ◽  
Hossam Shoman ◽  
Daniel Ratner ◽  
Karen Cheung ◽  
Lukas Chrostowski

Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.


Sign in / Sign up

Export Citation Format

Share Document