A Machine Learning Approach for Heart Rate Estimation from PPG Signal using Random Forest Regression Algorithm

Author(s):  
Shikder Shafiul Bashar ◽  
Md. Sazal Miah ◽  
A.H.M. Zadidul Karim ◽  
Md. Abdullah Al Mahmud ◽  
Zahid Hasan
2019 ◽  
Vol 11 (8) ◽  
pp. 920 ◽  
Author(s):  
Syed Haleem Shah ◽  
Yoseline Angel ◽  
Rasmus Houborg ◽  
Shawkat Ali ◽  
Matthew F. McCabe

Developing rapid and non-destructive methods for chlorophyll estimation over large spatial areas is a topic of much interest, as it would provide an indirect measure of plant photosynthetic response, be useful in monitoring soil nitrogen content, and offer the capacity to assess vegetation structural and functional dynamics. Traditional methods of direct tissue analysis or the use of handheld meters, are not able to capture chlorophyll variability at anything beyond point scales, so are not particularly useful for informing decisions on plant health and status at the field scale. Examining the spectral response of plants via remote sensing has shown much promise as a means to capture variations in vegetation properties, while offering a non-destructive and scalable approach to monitoring. However, determining the optimum combination of spectra or spectral indices to inform plant response remains an active area of investigation. Here, we explore the use of a machine learning approach to enhance the estimation of leaf chlorophyll (Chlt), defined as the sum of chlorophyll a and b, from spectral reflectance data. Using an ASD FieldSpec 4 Hi-Res spectroradiometer, 2700 individual leaf hyperspectral reflectance measurements were acquired from wheat plants grown across a gradient of soil salinity and nutrient levels in a greenhouse experiment. The extractable Chlt was determined from laboratory analysis of 270 collocated samples, each composed of three leaf discs. A random forest regression algorithm was trained against these data, with input predictors based upon (1) reflectance values from 2102 bands across the 400–2500 nm spectral range; and (2) 45 established vegetation indices. As a benchmark, a standard univariate regression analysis was performed to model the relationship between measured Chlt and the selected vegetation indices. Results show that the root mean square error (RMSE) was significantly reduced when using the machine learning approach compared to standard linear regression. When exploiting the entire spectral range of individual bands as input variables, the random forest estimated Chlt with an RMSE of 5.49 µg·cm−2 and an R2 of 0.89. Model accuracy was improved when using vegetation indices as input variables, producing an RMSE ranging from 3.62 to 3.91 µg·cm−2, depending on the particular combination of indices selected. In further analysis, input predictors were ranked according to their importance level, and a step-wise reduction in the number of input features (from 45 down to 7) was performed. Implementing this resulted in no significant effect on the RMSE, and showed that much the same prediction accuracy could be obtained by a smaller subset of indices. Importantly, the random forest regression approach identified many important variables that were not good predictors according to their linear regression statistics. Overall, the research illustrates the promise in using established vegetation indices as input variables in a machine learning approach for the enhanced estimation of Chlt from hyperspectral data.


2021 ◽  
Author(s):  
Merlin James Rukshan Dennis

Distributed Denial of Service (DDoS) attack is a serious threat on today’s Internet. As the traffic across the Internet increases day by day, it is a challenge to distinguish between legitimate and malicious traffic. This thesis proposes two different approaches to build an efficient DDoS attack detection system in the Software Defined Networking environment. SDN is the latest networking approach which implements centralized controller, which is programmable. The central control and the programming capability of the controller are used in this thesis to implement the detection and mitigation mechanisms. In this thesis, two designed approaches, statistical approach and machine-learning approach, are proposed for the DDoS detection. The statistical approach implements entropy computation and flow statistics analysis. It uses the mean and standard deviation of destination entropy, new flow arrival rate, packets per flow and flow duration to compute various thresholds. These thresholds are then used to distinguish normal and attack traffic. The machine learning approach uses Random Forest classifier to detect the DDoS attack. We fine-tune the Random Forest algorithm to make it more accurate in DDoS detection. In particular, we introduce the weighted voting instead of the standard majority voting to improve the accuracy. Our result shows that the proposed machine-learning approach outperforms the statistical approach. Furthermore, it also outperforms other machine-learning approach found in the literature.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 63-72
Author(s):  
Jorge Iván Pérez Rave ◽  
Favián González Echavarría ◽  
Juan Carlos Correa Morales

The objective of this work is to develop a machine learning model for online pricing of apartments in a Colombian context. This article addresses three aspects: i) it compares the predictive capacity of linear regression, regression trees, random forest and bagging; ii) it studies the effect of a group of text attributes on the predictive capability of the models; and iii) it identifies the more stable-important attributes and interprets them from an inferential perspective to better understand the object of study. The sample consists of 15,177 observations of real estate. The methods of assembly (random forest and bagging) show predictive superiority with respect to others. The attributes derived from the text had a significant relationship with the property price (on a log scale). However, their contribution to the predictive capacity was almost nil, since four different attributes achieved highly accurate predictions and remained stable when the sample change.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3837 ◽  
Author(s):  
Seong-Eun Park ◽  
Seung-Ho Seo ◽  
Eun-Ju Kim ◽  
Dae-Hun Park ◽  
Kyung-Mok Park ◽  
...  

The purpose of this study was to analyze metabolic differences of ginseng berries according to cultivation age and ripening stage using gas chromatography-mass spectrometry (GC-MS)-based metabolomics method. Ginseng berries were harvested every week during five different ripening stages of three-year-old and four-year-old ginseng. Using identified metabolites, a random forest machine learning approach was applied to obtain predictive models for the classification of cultivation age or ripening stage. Principal component analysis (PCA) score plot showed a clear separation by ripening stage, indicating that continuous metabolic changes occurred until the fifth ripening stage. Three-year-old ginseng berries had higher levels of valine, glutamic acid, and tryptophan, but lower levels of lactic acid and galactose than four-year-old ginseng berries at fully ripened stage. Metabolic pathways affected by different cultivation age were involved in amino acid metabolism pathways. A random forest machine learning approach extracted some important metabolites for predicting cultivation age or ripening stage with low error rate. This study demonstrates that different cultivation ages or ripening stages of ginseng berry can be successfully discriminated using a GC-MS-based metabolomic approach together with random forest analysis.


Author(s):  
Amy Marie Campbell ◽  
Marie-Fanny Racault ◽  
Stephen Goult ◽  
Angus Laurenson

Oceanic and coastal ecosystems have undergone complex environmental changes in recent years, amid a context of climate change. These changes are also reflected in the dynamics of water-borne diseases as some of the causative agents of these illnesses are ubiquitous in the aquatic environment and their survival rates are impacted by changes in climatic conditions. Previous studies have established strong relationships between essential climate variables and the coastal distribution and seasonal dynamics of the bacteria Vibrio cholerae, pathogenic types of which are responsible for human cholera disease. In this study we provide a novel exploration of the potential of a machine learning approach to forecast environmental cholera risk in coastal India, home to more than 200 million inhabitants, utilising atmospheric, terrestrial and oceanic satellite-derived essential climate variables. A Random Forest classifier model is developed, trained and tested on a cholera outbreak dataset over the period 2010–2018 for districts along coastal India. The random forest classifier model has an Accuracy of 0.99, an F1 Score of 0.942 and a Sensitivity score of 0.895, meaning that 89.5% of outbreaks are correctly identified. Spatio-temporal patterns emerged in terms of the model’s performance based on seasons and coastal locations. Further analysis of the specific contribution of each Essential Climate Variable to the model outputs shows that chlorophyll-a concentration, sea surface salinity and land surface temperature are the strongest predictors of the cholera outbreaks in the dataset used. The study reveals promising potential of the use of random forest classifiers and remotely-sensed essential climate variables for the development of environmental cholera-risk applications. Further exploration of the present random forest model and associated essential climate variables is encouraged on cholera surveillance datasets in other coastal areas affected by the disease to determine the model’s transferability potential and applicative value for cholera forecasting systems.


Sign in / Sign up

Export Citation Format

Share Document