scholarly journals A new virtual-flux-vector based droop control strategy for parallel connected inverters in microgrids

Author(s):  
Jiefeng Hu ◽  
Jianguo Zhu ◽  
Yanqing Qu ◽  
Josep M. Guerrero
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4893
Author(s):  
Saheb Khanabdal ◽  
Mahdi Banejad ◽  
Frede Blaabjerg ◽  
Nasser Hosseinzadeh

The droop control scheme based on Q − ⍵ and P − V characteristics is conventionally employed to share the load power among sources in an islanded low-voltage microgrid with resistive line impedances. However, it suffers from poor active power sharing, and is vulnerable to sustained deviations in frequency and voltage. Therefore, accurate power sharing and maintaining the frequency and voltage in the desired ranges are challenging. This paper proposes a novel microgrid control strategy to address these issues. The proposed strategy consists of a virtual flux droop and a model predictive control, in which the virtual flux is the time integral of the voltage. Firstly, the novel virtual flux droop control is proposed to accurately control the power sharing among DGs. Then, the model predictive flux control is employed to generate the appropriate switching signals. The proposed strategy is simple without needing multiple feedback control loops. In addition, pulse width modulation is not required and tuning challenges for PI regulators are avoided. In order to evaluate the effectiveness of the proposed microgrid control strategy, simulation analysis is carried out in Matlab/Simulink software environment. The results show that accurate power sharing is achieved while a good dynamic response is provided. Furthermore, the voltage and frequency deviations are significantly improved.


Author(s):  
Angelos I. Nousdilis ◽  
Georgios C. Kryonidis ◽  
Eleftherios O. Kontis ◽  
Georgios Christos Christoforidis ◽  
Grigoris K. Papagiannis

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1835 ◽  
Author(s):  
Qiuxia Yang ◽  
Dongmei Yuan ◽  
Xiaoqiang Guo ◽  
Bo Zhang ◽  
Cheng Zhi

Based on the concept of cyber physical system (CPS), a novel hierarchical control strategy for islanded microgrids is proposed in this paper. The control structure consists of physical and cyber layers. It’s used to improve the control effect on the output voltages and frequency by droop control of distributed energy resources (DERs), share the reactive power among DERs more reasonably and solve the problem of circumfluence in microgrids. The specific designs are as follows: to improve the control effect on voltages and frequency of DERs, an event-trigger mechanism is designed in the physical layer. When the trigger conditions in the mechanism aren’t met, only the droop control (i.e., primary control) is used in the controlled system. Otherwise, a virtual leader-following consensus control method is used in the cyber layer to accomplish the secondary control on DERs; to share the reactive power reasonably, a method of double virtual impedance is designed in the physical layer to adjust the output reactive power of DERs; to suppress circumfluence, a method combined with consensus control without leader and sliding mode control (SMC) is used in the cyber layer. Finally, the effectiveness of the proposed hierarchical control strategy is confirmed by simulation results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Gurugubelli ◽  
Arnab Ghosh

Purpose The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance. Design/methodology/approach In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid. Findings The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy. Research limitations/implications In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work. Originality/value The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.


Sign in / Sign up

Export Citation Format

Share Document