parameters perturbation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Fengying Zheng ◽  
Bowei Xiong ◽  
Jingyang Zhang ◽  
Ziyang Zhen ◽  
Feng Wang

Abstract The main goal of this study was to create a robust control system that could guide or replace the pilots in tracking of commanded velocity and attitude in multimodal maneuver, while complex dynamics and uncertain aerodynamic cross-coupling among control surfaces of compound helicopter are considered. To this end, a Pi-Sigma neural network (PSNN) adaptive controller is proposed based upon the certainty-equivalence (CE) principle, where a novel Lyapunov-based weight self-tuning algorithm augmented with e-modification is designed to realize efficient uncertainty approximation and guarantee robustness of convergence process. Compared with traditional neural networks in control field, stronger generalization ability of PSNN must be balanced against weaker stability, which leads to inevitable parameters perturbation. Therefore, an incremental nonlinear dynamic inversion (INDI) framework is established to decouple original overactuated system and reject parameters perturbation in PSNN. Meanwhile, by incorporating Lagrang- multiplier method into allocation, an original incremental allocation method is designed to get globally ideal control input according to time-varying working capability of each surface. In terms of Lyapunov theorem, it is demonstrated that the closed-loop augmented system driven by the proposed control scheme is semi-global uniformly ultimately bounded (SGUUB). Finally, the simulation result validates the effectiveness of proposed control scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yihui Gong ◽  
Lin Li ◽  
Shengbo Qi ◽  
Changbin Wang ◽  
Dalei Song

Purpose A novel proportional integral derivative-extended state disturbance observer-based control (PID-ESDOBC) algorithm is proposed to solve the nonlinear hydrodynamics, parameters perturbation and external disturbance in yaw control of remote operated vehicles (ROVs). The effectiveness of PID-ESDOBC is verified through the experiments and the results indicate that the proposed method can effectively track the desired attitude and attenuate the external disturbance. Design/methodology/approach This study fully investigates the hydrodynamic model of ROVs and proposes a control-oriented hydrodynamic state space model of ROVs in yaw direction. Based on this, this study designs the PID-ESDOBC controller, whose stability is also analyzed through Kharitonov theorem and Mikhailov criterion. The conventional proportional-integral-derivative (PID) and active disturbance rejection control (ADRC) are compared with our method in our experiment. Findings In this paper, the authors address the nonlinear hydrodynamics, parameters perturbation and external disturbance problems of ROVs with multi-vector propulsion by using PID-ESDOBC control scheme. The advantage is that the nonlinearities and external disturbance can be estimated accurately and attenuate promptly without requiring the precise model of ROVs. Compared to PID and ADRC, both in overshoot and settling time, the improvement is 2X on average compared to conventional PID and ADRC in the pool experiment. Research limitations/implications The delays occurred in the control process can be solved in the future work. Practical implications The attitude control is a kernel problem for ROVs. A precise kinematic and dynamic model for ROVs and an advanced control system are the key factors to obtain the better maneuverability in attitude control. The PID-ESDOBC method proposed in this paper can effectively attenuate nonlinearities and external disturbance, which leads to a quick response and good tracking performance to baseline controller. Social implications The PID-ESDOBC algorithm proposed in this paper can be ensure the precise and fast maneuverability in attitude control of ROVs or other underwater equipment operating in the complex underwater environment. In this way, the robot can better perform undersea work and tasks. Originality/value The dynamics of the ROV and the nominal control model are investigated. A novel control scheme PID-ESDOBC is proposed to achieve rapidly yaw attitude tracking and effectively reject the external disturbance. The robustness of the controller is also analyzed which provides parameters tuning guidelines. The effectiveness of the proposed controller is experimental verified with a comparison by conventional PID, ADRC.


2021 ◽  
pp. 1-34
Author(s):  
Tamir Perl ◽  
Ronen Maimon ◽  
Slava Krylov ◽  
Nahum Shimkin

Abstract In this paper we present a control strategy for a MEMS gyroscope with a drive mode excited through parametric resonance. The reduced order two degrees of freedom model of the device is built and the drive mode control is implemented using Phase Locked Loop (PLL) and Automatic Gain Control (AGC) loops. A sense mode vibration control algorithm is developed as well for enhanced sensor performance. The analysis of the drive mode control loops is conducted using the multiple scales method. The robustness of the suggested control loops to parameters perturbation is demonstrated using the model. A simplified linear model of the control loops is shown to predict the device behavior with good accuracy.


Author(s):  
Xiaofeng Yang ◽  
Long Yan ◽  
Yujie Shen ◽  
Hongchang Li ◽  
Yanling Liu

Inerter, a new type of mass element, can increase the inertia of motion between two endpoints. In order to study the dynamic inertia effect of inerter–spring–damper suspension for heavy vehicle on ride comfort and road friendliness, the inerter–spring–damper suspension is applied and its mechanism is studied. This paper establishes a half vehicle model of inerter–spring–damper suspension for heavy vehicle. The parameters of inerter–spring–damper suspension for heavy vehicle are optimized by multi-objective genetic algorithm and system simulations are carried out. The parametric influence of different spring stiffness, damping coefficient, inertance, and load on suspension performance is also studied. The simulation results demonstrate that the centroid acceleration and pitch angular acceleration are improved by 24.90% and 23.54%, respectively, and the comprehensive road damage coefficient is reduced by 4.05%. The results illustrate that the inerter–spring–damper suspension can decrease the vertical vibration of vehicle suspension especially in low frequency and reduce the road damage. The analyses of suspension parameters perturbation reveal their different effect laws of the different wheels on vehicle ride comfort and road friendliness, which provide a theoretical basis for setting parameters of inerter–spring–damper suspension.


2020 ◽  
Author(s):  
Emmanuele Russo ◽  
Bijan Fallah ◽  
Christoph Raible

<div>In this study the COSMO-CLM sensitivity to parameters perturbation is investigated under different climate forcings. The main aim is to understand</div><div>how the uncertainty of the model propagates in different climate regimes and whether the model presents structural stability when different forcings are considered. For this purpose, two Physically Perturbed Ensembles (PPEs) are produced, each composed of 35 realizations, at two different periods of the past: the Mid-Holocene, 6000 years ago, and the Pre-industrial period. The two periods present significant differences in the seasonal values of incoming insolation due to changes in the Earth’s orbital configuration. The effects of these changes on the Earth’s radiative balance, at least when considering seasonal values, are of the same magnitude of the changes due to GHGs emissions of the worst case Representative Concentration Pathway scenario (RCP8.5). Two additional ensembles, but with a lower number of components, are produced in order to determine the role of the boundaries with respect to the one of changes in the climate forcings.</div><div>Preliminary analyses show that the model presents a structurally stable behavior in the two periods for several variables, in particular when considering climate mean statistics. Some parameters do not produce sensible changes in the model behavior in both periods. This confirms that conducting a calibration of the model only on a restricted set of parameters is a good praxis when willing to simulate future or past climate change. On the other hand, some parameters show remarkable changes with respect to a reference simulation: these differences are maintained in the two different regimes, pointing again to a relatively good model stability, but also to a very similar sensitivity of the model to the different forcings. Finally, when considering the ensembles with the same forcings but different boundaries, the effect of the boundaries seems to play a major role. This is particularly important for climate projections using the COSMO-CLM: a model PPE would probably not be particularly relevant in order to characterize the model uncertainty, but more attention should instead be paid to consider a wide ensemble of independent boundary realizations with different GCMs</div>


2019 ◽  
Author(s):  
Miroslava Vukcevic ◽  
Luka Č. Popović

Abstract. There are many observational evidences of different fine structures in the ionosphere and magnetosphere of the Earth. Such structures are created and evolve as a perturbation of the ionosphere’s parameters. Instead of dealing with number of linear waves, we propose to investigate and follow up the perturbations in the ionosphere by dynamics of soliton structure. Apart of the fact that it is more accurate solution, the advantage of soliton solution is its localization in space and time as consequence of balance between nonlinearity and dispersion. The existence of such structure is driven by the properties of the medium. We derive necessary condition for having nonlinear soliton wave, taking the vortex shape, as description of ionosphere parameters perturbation. We employ magnetohydrodynamical description for the ionosphere in plane geometry, including rotational effects, magnetic field effects via ponderomotive force, pressure and gravitational potential effects, treating the problem self-consistently and nonlinearly. In addition, we consider compressible perturbation. As a result, we have obtained that Coriolis force and magnetic force at one side, and pressure and gravity on the other side, determine dispersive properties. Dispersion at higher latitudes is mainly driven by rotation, while near the equator, within the E and F-layer of ionosphere, magnetic field modifies the soliton solution. Also, very general description of the ionosphere results in the conclusion that the unperturbed thickness of the ionosphere layer cannot be taken as ad hoc assumption, it is rather consequence of equilibrium property, which is shown in this calculation.


Author(s):  
Wei Jiang ◽  
Yu Yan ◽  
Lianqing Yu ◽  
Hong Jun Li ◽  
Lizhen Du ◽  
...  

Purpose In the high-altitude, high-voltage electromagnetic interference operation environment, due to the parameters perturbation for robot control model caused by uncertainties and disturbances, and with the poor effective of the conventional proportional–integral–derivative (PID) control to parameters perturbation system, the mathematical model of power cable live operation robot joint PID closed-loop control system is established. Design/methodology/approach The corresponding joint motion robust PID control method is also proposed based on Kharitonov theory, the system robust stability conditions including the sufficient and necessary conditions are deduced and obtained and the solving process of robust PID control parameters stability region is provided. Findings Finally, the simulation research on robot joint motion PID control system is also launched in MATLAB environment based on Kharitonov theory. The results show that the conventional PID control obtains better control effect only to nominal model but is ineffective to parameter perturbation system, while robust PID obtains sound control effect to parameter perturbation system. Compared with H8 robust PID, the Kharitonov robust PID has better control effect which meet the system design requirements of joint motor quickly response, high tracking accuracy and sound stability. Finally, the validity and engineering practicability are verified by 220-kV living replacing damper operation experiment. Originality/value This paper has described the development of a damper replacement power cable live maintenance robot experimental prototype, which greatly improves operation efficiency and deals with the safety problem of operation in a high-voltage environment. A general manipulator motion control model of the power cable robot is established; the Kharitonov theory-based parameter perturbation robust motion control method of damper replacement robot is also obtained. Through the simulation comparison, it is verified that the Kharitonov control has more superiority for dealing with the parameter perturbation systems under the premise of ensuring the stability motion. The field experiment has further confirmed the engineering practicability.


Sign in / Sign up

Export Citation Format

Share Document