Optimized pole and zero placement with state observer for LCL-type grid-connected inverter

Author(s):  
Mingyu Xue ◽  
Yu Zhang ◽  
Fangrui Liu ◽  
Yong Kang ◽  
Yongxian Yi
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2051
Author(s):  
Thuy Vi Tran ◽  
Kyeong-Hwa Kim

A high reliability of a grid-connected inverter (GCI) system at reasonable cost is a critical requirement for maximizing renewable energy potential in the electrical energy market. Several grid voltage sensorless control approaches have been investigated not only to eliminate the vulnerability of faulty sensors but also to further reduce the GCI commercial price. In this paper, a frequency adaptive integral-resonant full-state feedback current control scheme with the facilitation of a full-state observer is adopted for a grid-connected inductive–capacitive–inductive (LCL) filtered inverter without sensing the grid voltages. The proposed scheme actively damps the filter resonance and ensures the robustness of the inverter system against unexpected severe grid conditions with low cost and simplified hardware construction. The synchronization of the inverter with the main grid is accomplished by the proposed current controller-based grid voltage estimator, in which the grid frequency and phase angle can be detected effectively. In addition, the actual grid voltages are precisely regenerated to ensure the stable performance of the full-state observer. A safe start-up procedure is also presented for the grid voltage sensorless control of the LCL-filtered inverter to avoid a critical overcurrent and long settling time during the start-up instant, offering a stable and reliable inverter system operation with low computational burden. The effectiveness and feasibility of the proposed voltage sensorless current control scheme are validated by the simulation and experimental results under non-ideal grid conditions such as the harmonic distortion, grid frequency variation, and sudden grid phase angle jump.


Sign in / Sign up

Export Citation Format

Share Document