A High Gain DC-DC Topology Based on Two-Winding Coupled Inductors Featuring Continuous Input Current

Author(s):  
Mohsen Mahmoudi ◽  
Ali Ajami ◽  
Ebrahim Babaei ◽  
Nima Abdolmaleki ◽  
Caisheng Wang
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 54710-54721
Author(s):  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Javed Ahmad ◽  
Mohd Anas Khan ◽  
Shahrukh Khan ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5243
Author(s):  
Maysam Abbasi ◽  
Ehsan Abbasi ◽  
Li Li ◽  
Behrouz Tousi

Due to concerns, such as global warming and depletion of fossil fuels, countries are forced to integrate energy storage devices (ESSs) and renewable energy sources (RESs), such as photovoltaic (PV) systems, wind turbines and fuel cells, into their power networks. Here, a new high gain DC–DC converter with step-up/down ability is proposed for modern applications. Since this converter provides high variable voltage gain, it can be employed for output voltage regulation purposes in RESs such as solar panels. Additionally, this converter provides a remarkable reduction in voltage stress on the switched capacitors and power switches. Due to its modular structure obtained by employing switched-capacitors (SCs), it is possible for this topology to gain a very high voltage conversion ratio using low duty-cycles produced by a simple and straightforward control system. To be specific, the more the number of SC cells increase, the more the output voltage increases. The proposed converter has a continuous input current allowing to extract the maximum power from RESs like PV panels. It should be noted that the application of this converter is not limited to the aforementioned ones since it can be used in various applications needing high voltage gains such as generating the desired voltage level in high voltage direct current (HVDC) systems especially their transmission lines. For validating the performance of the proposed structure, comprehensive comparisons and experimental results are presented.


2015 ◽  
Vol 16 (2) ◽  
pp. 244
Author(s):  
Md Yaseen ◽  
Dr. P Usha

A transformer-less boost converter which provides high voltage gain without utilizing transformer or coupled inductors and extreme duty cycle is proposed in this paper.  Also it is able to cancel the ripples in the input current at a preselected duty cycle, without increasing the number of components. The converter combines the features of boost converter and a three switch high voltage converter. At the input side, two inductors are interleaved for cancelling the input current ripple and at the output side switched capacitor voltage multiplier is used to increase the voltage gain. Feedback control is used to make the output voltage constant in spite of variation in the input or load or both i.e. both line and load regulation is accompanied. This proposed converter configuration helps eliminate the input current ripple and provides voltage deregulation for low power applications.


Sign in / Sign up

Export Citation Format

Share Document