scholarly journals Transformerless high gain boost converter for low power applications with feedback control

2015 ◽  
Vol 16 (2) ◽  
pp. 244
Author(s):  
Md Yaseen ◽  
Dr. P Usha

A transformer-less boost converter which provides high voltage gain without utilizing transformer or coupled inductors and extreme duty cycle is proposed in this paper.  Also it is able to cancel the ripples in the input current at a preselected duty cycle, without increasing the number of components. The converter combines the features of boost converter and a three switch high voltage converter. At the input side, two inductors are interleaved for cancelling the input current ripple and at the output side switched capacitor voltage multiplier is used to increase the voltage gain. Feedback control is used to make the output voltage constant in spite of variation in the input or load or both i.e. both line and load regulation is accompanied. This proposed converter configuration helps eliminate the input current ripple and provides voltage deregulation for low power applications.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1932
Author(s):  
Navid Salehi ◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4634
Author(s):  
Eduardo Augusto Oliveira Barbosa ◽  
Márcio Rodrigo Santos de Carvalho ◽  
Leonardo Rodrigues Limongi ◽  
Marcelo Cabral Cavalcanti ◽  
Eduardo José Barbosa ◽  
...  

This paper proposes a high step-up high-efficiency converter, comprised of an active switched coupled-inductor cell. The secondary windings are integrated into a rectifier voltage multiplier cell in a boost-flyback configuration, allowing the operation with high voltage gain with low switches duty cycle and low turn-ratios on the coupled-inductors. Both coupled-inductors are integrated into a single core due to the parallel operation of the switches. The leakage inductances of the coupled-inductors are used to mitigate the reverse recovery currents of the diodes, while regenerative clamp circuits are used to protect the switches from the voltage spikes caused by the leakage inductances. The operation of the converter is analyzed both quantitatively and qualitatively, and the achieved results are validated through experimentation of a 400 W prototype. A 97.1% CEC efficiency is also reported.


2013 ◽  
Vol 60 (10) ◽  
pp. 4492-4499 ◽  
Author(s):  
Julio Cesar Rosas-Caro ◽  
Fernando Mancilla-David ◽  
Jonathan Carlos Mayo-Maldonado ◽  
Juan Miguel Gonzalez-Lopez ◽  
Hilda Lizeth Torres-Espinosa ◽  
...  

Author(s):  
Navid Salehi ◽  
Herminio Martinez-Garcia ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the converter takes the advantages of both impedance source and cascaded converters. However, by applying some modifications, the proposed converter provides high voltage gain while the voltage stress of switch and diodes are still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in order to expand the lifetime of PV panels. After analyzing the operation principles of the proposed converter, simulation and experimental results of a 100W prototype are presented to verify the proposed converter performance.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 423
Author(s):  
Cesar Ibarra-Nuño ◽  
Alma Rodríguez ◽  
Avelina Alejo-Reyes ◽  
Erik Cuevas ◽  
Juan M. Ramirez ◽  
...  

This manuscript presents the numerical optimization (through a mathematical model and an evolutionary algorithm) of the voltage-doubler boost converter, also called the series-capacitor boost converter. The circuit is driven by two transistors, each of them activated according to a switching signal. In the former operation, switching signals have an algebraic dependence from each other. This article proposes a new method to operate the converter. The proposed process reduces the input current ripple without changing any converter model parameter, only the driving signals. In the proposed operation, switching signals of transistors are independent of each other, providing an extra degree of freedom, but on the other hand, this produces an infinite number of possible combinations of duty cycles (the main parameter of switching signals) to achieve the desired voltage gain. In other words, this leads to a problem with infinite possible solutions. The proposed method utilizes an evolutionary algorithm to determine the switching functions and, at the same time, to minimize the input current ripple of the converter. A comparison made between the former and the proposed operation shows that the proposed process achieves a lower input current ripple while achieving the desired voltage gain.


2021 ◽  
Author(s):  
HENRIQUE JAHNKE HOCH ◽  
TIAGO MIGUEL KLEIN FAISTEL ◽  
ADEMIR TOEBE ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

High step-up DC-DC converters are necessary in photovoltaic energy generation, due the low voltage of the panels source. This article propose the Doubler Output Coupled Inductor converter. This converter is based in boost converter and utilize switched capacitors and a coupled inductor to maximize the static voltage gain. The converter achieve a high voltage gain with low turns ratio in the coupled inductor and an acceptable duty cycle. Can highlight the converter utilize low number of components and have low voltage and current stresses in semiconductors. To validate and evaluate the operation of the converter a 200W prototype is simulated.


2014 ◽  
Vol 573 ◽  
pp. 83-88
Author(s):  
A. Marikkannan ◽  
B.V. Manikandan ◽  
S. Jeyanthi

The interest toward the application of fuel cells is increasing in the last years mainly due to the possibility of highly efficient decentralized clean energy generation. The output voltage of fuel-cell stacks is generally below 50 V. Consequently, low-power applications with high output voltage require a high gain for proper operation. A zero-voltage-switching (ZVS) dc–dc converter with high voltage gain is proposed for fuel cell as a front-end converter. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The principle of operation and system analysis are presented. Theoretical analysis and simulation result of the proposed converter were verified.


Sign in / Sign up

Export Citation Format

Share Document