scholarly journals Adaptive-fuzzy-PID controller based disturbance observer for DC motor speed control

Author(s):  
Zulfatman Has ◽  
Ahzen Habibidin Muslim ◽  
Nur Alif Mardiyah
2012 ◽  
Vol 588-589 ◽  
pp. 1650-1653
Author(s):  
Yu Hao Qian

Based on the mathematical model of the brushless DC motor (BLDCM), a self-adaptive fuzzy PID controller is designed to achieve high-precision speed control of motor by adopting fuzzy control principle, simulation is conducted in MATLAB /SIMULINK, the result shows that the controller can work well with quick response, no overshoot output and high control precision, has strong robustness under the circumstances of various disturbances and parameter variations, whose static and dynamic performance with the self-adaptive fuzzy PID control are both better than conventional PID control.


Author(s):  
Adnan Jabbar Attiya ◽  
Salam Waley Shneen ◽  
Basma Abdullah Abbas ◽  
Yang Wenyu

In a robotic grinding process, a light-weight grinder is held by an intelligible robot arm. Material removal is carried out by the rotating grinding tool while the end effector of robot guarantees that the tool follows a programmed path in order to work on complex curved surfaces. Grinding tool is driven by Two-Phase Hybrid Stepping motor derive. This work aims to develop a controller based on fuzzy logic to improve the speed control performance of Two-Phase Hybrid Stepping motor derive in order to achieve a controller that provides grinding with higher quality. The analysis and design of PID-Fuzzy controller to improve the response of the motor speed were studied. This paper simulates six motor speed input conditions. The simullink package of the MATLAB. Comparison between the conventional PID controller and Fuzzy-PID output was done on the basis of the simulation result obtained by MATLAB. The simulation results demonstrate that the designed Fuzzy-PID controller realize a good dynamic behavior of the Two-Phase Hybrid Stepping motor, a perfect speed tracking with less rise and settling time, minimum overshoot, minimum steady state error and give better performance compared to conventional PID controller.


2014 ◽  
Vol 644-650 ◽  
pp. 179-183
Author(s):  
Ya Juan Chen ◽  
Yue Hong Zhang

In this paper, an adaptive fuzzy PID controller based on genetic algorithm is designed. Brushless DC motor uses double closed loop control system. The adaptive fuzzy PID controller based on genetic algorithm is applied to outer ring speed ring, and PI controller is applied to inner ring. The simulation results show that, the designed brushless DC motor control system based on genetic algorithm optimization has a short rise time and no overshoot, small steady-state error and other advantages. And the system has strong robustness and adaptability.


Sign in / Sign up

Export Citation Format

Share Document