Arm Robot Manipulator Design and Control for Trajectory Tracking; a Review

Author(s):  
Hendra Marta Yudha ◽  
Tresna Dewi ◽  
Pola Risma ◽  
Yurni Oktarina
1989 ◽  
Vol 42 (4) ◽  
pp. 117-128 ◽  
Author(s):  
S. S. Rao ◽  
P. K. Bhatti

Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics.


1989 ◽  
Vol 111 (4) ◽  
pp. 667-672 ◽  
Author(s):  
R. P. Petroka ◽  
Liang-Wey Chang

Flexibility effects on robot manipulator design and control are typically ignored which is justified when large, bulky robotic mechanisms are moved at slow speeds. However, when increased speed and improved accuracy are desired in robot system performance it is necessary to consider flexible manipulators. This paper simulates the motion of a single-link, flexible manipulator using the Equivalent Rigid Link System (ERLS) dynamic model and experimentally validates the computer simulation results. Validation of the flexible manipulator dynamic model is necessary to ensure confidence of the model for use in future design and control applications of flexible manipulators.


Robotica ◽  
1989 ◽  
Vol 7 (3) ◽  
pp. 213-221 ◽  
Author(s):  
A. Kanarachos ◽  
M. Sfantsikopoulos ◽  
P. Vionis

SUMMARYIn this paper, a new splines–based control method for robot manipulators is presented and discussed. The above method can be effectively used for path planning and control of rigid and flexible robots. The computational simplicity of the proposed algorithm, together with its flexibility and its high–level intelligence built in, can be considered as promising tools for achieving the goals of modem robot manipulator design.


2021 ◽  
Vol 1802 (2) ◽  
pp. 022067
Author(s):  
Xing Zhang ◽  
Hao Kou ◽  
Yi Zhang ◽  
Kaina Jan ◽  
Boris Ivanovic

Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


Author(s):  
Muhammad Salman ◽  
Hamza Khan ◽  
Saad Jamshed Abbasi ◽  
Min Cheol Lee

Sign in / Sign up

Export Citation Format

Share Document