A Splines–Based Control Method for Robot Manipulators

Robotica ◽  
1989 ◽  
Vol 7 (3) ◽  
pp. 213-221 ◽  
Author(s):  
A. Kanarachos ◽  
M. Sfantsikopoulos ◽  
P. Vionis

SUMMARYIn this paper, a new splines–based control method for robot manipulators is presented and discussed. The above method can be effectively used for path planning and control of rigid and flexible robots. The computational simplicity of the proposed algorithm, together with its flexibility and its high–level intelligence built in, can be considered as promising tools for achieving the goals of modem robot manipulator design.

Robotica ◽  
2019 ◽  
Vol 38 (5) ◽  
pp. 775-786 ◽  
Author(s):  
Zexin Li ◽  
Feng Xu ◽  
Dongsheng Guo ◽  
Pingjiang Wang ◽  
Bo Yuan

SUMMARYRepetitive motion planning and control (RMPC) is a significant issue in the research of redundant robot manipulators. Moreover, noise from rounding error, truncation error, and robot uncertainty is an important factor that greatly affects RMPC schemes. In this study, the RMPC of redundant robot manipulators in a noisy environment is investigated. By incorporating the proportional and integral information of the desired path, a new RMPC scheme with pseudoinverse-type (P-type) formulation is proposed. Such a P-type RMPC scheme possesses the suppression of constant and bounded time-varying noises. Comparative simulation results based on a five-link robot manipulator and a PUMA560 robot manipulator are presented to further validate the effectiveness and superiority of the proposed P-type RMPC scheme over the previous one.


Robotica ◽  
2018 ◽  
Vol 36 (5) ◽  
pp. 655-675 ◽  
Author(s):  
Dongsheng Guo ◽  
Kene Li ◽  
Bolin Liao

SUMMARYThis study proposes and investigates a new type of bi-criteria minimization (BCM) for the motion planning and control of redundant robot manipulators to address the discontinuity problem in the infinity-norm acceleration minimization (INAM) scheme and to guarantee the final joint velocity of motion to be approximate to zero. This new type is based on the combination of minimum weighted velocity norm (MWVN) and INAM criteria, and thus is called the MWVN–INAM–BCM scheme. In formulating such a scheme, joint-angle, joint-velocity, and joint-acceleration limits are incorporated. The proposed MWVN–INAM–BCM scheme is reformulated as a quadratic programming problem solved at the joint-acceleration level. Simulation results based on the PUMA560 robot manipulator validate the efficacy and applicability of the proposed MWVN–INAM–BCM scheme in robotic redundancy resolution. In addition, the physical realizability of the proposed scheme is verified in practical application based on a six-link planar robot manipulator.


2021 ◽  
Vol 1802 (2) ◽  
pp. 022067
Author(s):  
Xing Zhang ◽  
Hao Kou ◽  
Yi Zhang ◽  
Kaina Jan ◽  
Boris Ivanovic

Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


1967 ◽  
Vol 3 (3) ◽  
pp. 231-234 ◽  
Author(s):  
E. K. Sashina ◽  
�. I. Shklovskii ◽  
A. B. Miller ◽  
Yu. S. Chentsov

Sign in / Sign up

Export Citation Format

Share Document