Synthetic Distribution Grid Generation Based on High Resolution Spatial Data

Author(s):  
Antoine Bidel ◽  
Tom Schelo ◽  
Thomas Hamacher
Author(s):  
Aleksandr Danchenkov ◽  
Aleksandr Danchenkov

Modern technologies, which provide fast and accurate acquisition of high-resolution spatial data, have found widespread application in the monitoring of coastal processes. This paper reports the results of four years’ monitoring of a huge deflation/blowout/wind-scour basin dynamics at the Vistula Spit (southeast coast of the Baltic Sea). Information about the volume and size dynamics together with deflation/accumulation schemes and 3D elevation maps is presented. Basing on the obtained results, forecast of the deflation basin dynamics for 2016 was proposed. This paper implements the Terrestrial Laserscanning (TLS) method to the coastal processes investigation and demonstrates its high potential in this field.


Author(s):  
Aleksandr Danchenkov ◽  
Aleksandr Danchenkov

Modern technologies, which provide fast and accurate acquisition of high-resolution spatial data, have found widespread application in the monitoring of coastal processes. This paper reports the results of four years’ monitoring of a huge deflation/blowout/wind-scour basin dynamics at the Vistula Spit (southeast coast of the Baltic Sea). Information about the volume and size dynamics together with deflation/accumulation schemes and 3D elevation maps is presented. Basing on the obtained results, forecast of the deflation basin dynamics for 2016 was proposed. This paper implements the Terrestrial Laserscanning (TLS) method to the coastal processes investigation and demonstrates its high potential in this field.


2021 ◽  
Author(s):  
Renato Somma ◽  
Alfredo Trocciola ◽  
Daniele Spizzichino ◽  
Alessandro Fedele ◽  
Gabriele Leoni ◽  
...  

<p>The archaeological site of Villa Arianna - located on Varano Hill, south of Vesuvius - offer tantalizing information regarding first-century AD resilience to hydrogeological risk. Additionally, the site provides an important test case for mitigation efforts of current and future geo-hazard. Villa Arianna, notable in particular for its wall frescoes, is part of a complex of Roman villas built between 89 BC and AD 79 in the ancient coastal resort area of Stabiae. This villa complex is located on a morphological terrace that separates the ruins from the present-day urban center of Castellammare di Stabia. The Varano hill is formed of alternating pyroclastic deposits, from the Vesuvius Complex, and alluvial sediments, from the Sarno River. The area, in AD 79, was completely covered by PDCs from the Plinian eruption of Vesuvius. Due to the geomorphological structure the slope is prone to slope instability phenomena that are mainly represented by earth and debris flows, usually triggered by heavy rainfall. The susceptibility is worsened by changes in hydraulic and land-use conditions mainly caused by lack of maintenance of mitigation works. Villa Arianna is the subject of a joint pilot project of the INGV-ENEA-ISPRA that includes non-invasive monitoring techniques such as the use of UAVs to study the areas of the slope at higher risk of instability. The project, in particular, seeks to implement innovative mitigation solutions that are non-destructive to the cultural heritage. UAVs represent the fastest way to produce high-resolution 3D models of large sites and allow archaeologists to collect accurate spatial data that can be used for 3D GIS analyses. Through this pilot project, we have used detailed 3D models and high-resolution ortho-images for new analyses and documentation of the site and to map the slope instabilities that threatens the Villa Arianna site. Through multi-temporal analyses of different data acquisitions, we intend to define the detailed morphological evolution of the entire Varano slope. These analyses will allow us to highlight priority areas for future low-impact mitigation interventions.</p>


2018 ◽  
Vol 19 (5) ◽  
pp. 957-971 ◽  
Author(s):  
B. Tisseyre ◽  
C. Leroux ◽  
L. Pichon ◽  
V. Geraudie ◽  
T. Sari

Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 339 ◽  
Author(s):  
Sami Towsif Khan ◽  
Fernando Chapa ◽  
Jochen Hack

Green Stormwater Infrastructure (GSI), a sustainable engineering design approach for managing urban stormwater runoff, has long been recommended as an alternative to conventional conveyance-based stormwater management strategies to mitigate the adverse impact of sprawling urbanization. Hydrological and hydraulic simulations of small-scale GSI measures in densely urbanized micro watersheds require high-resolution spatial databases of urban land use, stormwater structures, and topography. This study presents a highly resolved Storm Water Management Model developed under considerable spatial data constraints. It evaluates the cumulative effect of the implementation of dispersed, retrofitted, small-scale GSI measures in a heavily urbanized micro watershed of Costa Rica. Our methodology includes a high-resolution digital elevation model based on Google Earth information, the accuracy of which was sufficient to determine flow patterns and slopes, as well as to approximate the underground stormwater structures. The model produced satisfactory results in event-based calibration and validation, which ensured the reliability of the data collection procedure. Simulating the implementation of GSI shows that dispersed, retrofitted, small-scale measures could significantly reduce impermeable surface runoff (peak runoff reduction up to 40%) during frequent, less intense storm events and delay peak surface runoff by 5–10 min. The presented approach can benefit stormwater practitioners and modelers conducting small scale hydrological simulation under spatial data constraint.


2014 ◽  
Vol 64 (4) ◽  
pp. 519-535 ◽  
Author(s):  
Aissa Sehili ◽  
Günther Lang ◽  
Christoph Lippert

2018 ◽  
Vol 115 (43) ◽  
pp. E10275-E10282 ◽  
Author(s):  
Ricardo O. Amoroso ◽  
C. Roland Pitcher ◽  
Adriaan D. Rijnsdorp ◽  
Robert A. McConnaughey ◽  
Ana M. Parma ◽  
...  

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


2020 ◽  
Vol 12 (6) ◽  
pp. 958 ◽  
Author(s):  
Luofan Dong ◽  
Huaqiang Du ◽  
Ning Han ◽  
Xuejian Li ◽  
Di’en Zhu ◽  
...  

Above-ground biomass (AGB) directly relates to the productivity of forests. Precisely, AGB mapping for regional forests based on very high resolution (VHR) imagery is widely needed for evaluation of productivity. However, the diversity of variables and algorithms and the difficulties inherent in high resolution optical imagery make it complex. In this paper, we explored the potentials of the state-of-art algorithm convolutional neural networks (CNNs), which are widely used for its high-level representation, but rarely applied for AGB estimation. Four experiments were carried out to compare the performance of CNNs and other state-of-art Machine Learning (ML) algorithms: (1) performance of CNN using bands, (2) performance of Random Forest (RF), support vector regression (SVR), artificial neural network (ANN) on bands, and vegetation indices (VIs). (3) Performance of RF, SVR, and ANN on gray-level co-occurrence matrices (GLCM), and exploratory spatial data analysis (ESDA), and (4) performance of RF, SVR, and ANN based on all combined data and ESDA+VIs. CNNs reached satisfactory results (with R2 = 0.943) even with limited input variables (i.e., only bands). In comparison, RF and SVR with elaborately designed data obtained slightly better accuracy than CNN. For examples, RF based on GLCM textures reached an R2 of 0.979 and RF based on all combined data reached a close R2 of 0.974. However, the results of ANN were much worse (with the best R2 of 0.885).


2004 ◽  
Vol 36 (6) ◽  
pp. 1085-1099 ◽  
Author(s):  
Mette Termansen ◽  
Colin J McClean ◽  
Hans Skov-Petersen

Sign in / Sign up

Export Citation Format

Share Document