Smart Grid Dispatching Strategy Considering the Difference of Electric Vehicle Demand

Author(s):  
Zhenbo Xu ◽  
Wenlong Shi ◽  
Jianbin Wu ◽  
Huiwen Qi ◽  
Xiangyu Zhang ◽  
...  
Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4349
Author(s):  
Niklas Wulff ◽  
Fabia Miorelli ◽  
Hans Christian Gils ◽  
Patrick Jochem

As electric vehicle fleets grow, rising electric loads necessitate energy systems models to incorporate their respective demand and potential flexibility. Recently, a small number of tools for electric vehicle demand and flexibility modeling have been released under open source licenses. These usually sample discrete trips based on aggregate mobility statistics. However, the full range of variables of travel surveys cannot be accessed in this way and sub-national mobility patterns cannot be modeled. Therefore, a tool is proposed to estimate future electric vehicle fleet charging flexibility while being able to directly access detailed survey results. The framework is applied in a case study involving two recent German national travel surveys (from the years 2008 and 2017) to exemplify the implications of different mobility patterns of motorized individual vehicles on load shifting potential of electric vehicle fleets. The results show that different mobility patterns, have a significant impact on the resulting load flexibilites. Most obviously, an increased daily mileage results in higher electricty demand. A reduced number of trips per day, on the other hand, leads to correspondingly higher grid connectivity of the vehicle fleet. VencoPy is an open source, well-documented and maintained tool, capable of assessing electric vehicle fleet scenarios based on national travel surveys. To scrutinize the tool, a validation of the simulated charging by empirically observed electric vehicle fleet charging is advised.


2015 ◽  
Vol 6 (2) ◽  
pp. 784-794 ◽  
Author(s):  
Bishnu P. Bhattarai ◽  
Martin Levesque ◽  
Martin Maier ◽  
Brigitte Bak-Jensen ◽  
Jayakrishnan Radhakrishna Pillai

Author(s):  
Mingyu Dong ◽  
Dezhi Li ◽  
Rongjun Chen ◽  
Han Shu ◽  
Yongxiu He

2014 ◽  
Vol 5 (2) ◽  
pp. 712-721 ◽  
Author(s):  
Rajib Das ◽  
Kannan Thirugnanam ◽  
Praveen Kumar ◽  
Rajender Lavudiya ◽  
Mukesh Singh

Author(s):  
Murli Jha

Abstract: The initial dimensions and weight for the vehicle is considered from the Audi A8 vehicle as a reference. The specifications for the motor and battery are considered for the Mahindra e2o electric vehicle of similar dimensions. The main objective of this paper is to model and perform static analysis on the chassis of a four-seater car. The initial design for the chassis was a space frame body which is very rigid and had very less deflection. The second and final chassis is a ladder type chassis which is most common chassis type being used in Nepal and India. The difference in deflection between both the chassis type is very less, which is about 0.3235 mm for a reasonable reduction in weight which is about 120 Kg. The simulation part is carried out in ANSYS software. The result is selection of best suitable material for chassis on the basis of ANSYS and theoretically calculated result. Keywords: Chassis, Structural Analysis, Optimization, Four seater car


Sign in / Sign up

Export Citation Format

Share Document