A Modular Soft Robotic Exoskeleton for Active Hand Rehabilitation after Stroke

Author(s):  
Sergio C. Chirinos ◽  
Emir A. Vela
2015 ◽  
Vol 799-800 ◽  
pp. 1063-1068
Author(s):  
Mohd Nor Azmi bin Ab Patar ◽  
Takashi Komeda ◽  
Cheng Yee Low ◽  
Jamaluddin Mahmud

The development of a robotic exoskeleton to restore and rehab, hand and finger function is highly competitive nowadays. The robotic exoskeleton is an active actuated mechanism implemented in rehabilitation system, in which each finger attached to an instrumented lead screw mechanism allowing force and position control, according to the normal human setting. The robotic device is a direct driven actuated based on ergonomics measurements, capable to assist in flexion and extension motion. As an adaptation mechanism, it's also compatible with various sizes and shapes of anthropometric human‘s finger. The integration of DC servo motor and lead screw mechanism were the main features of the interface, which allows independent motion of the five fingers with small and lightweight actuators. The device is easily transportable, efficient safety performance, user friendly and offer multiple modes of training potentials. This paper presents the measurements implemented in the system to determine the requirements for finger and hand rehabilitation device, the design and characteristic of the whole system.


2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohd Nor Azmi Ab. Patar ◽  
Takashi Komeda ◽  
Low Cheng Yee ◽  
Jamaluddin Mahmud

We have developed a robotic exoskeleton to restore and rehab hand and finger function. The robotic exoskeleton is a hybrid actuated mechanism rehabilitation system, in which each finger is attached to an instrumented lead screw mechanism allowing force and position control according to the normal human setting. The robotic device, whose implemented is based on biomechanics measurements, able to assist the subject in flexion and extension motion. It also compatible with various shapes and sizes of human‘s finger. Main features of the interface include an integration of DC servo motor and lead screw mechanism which allows independent motion of the five fingers with small actuators. The device is easily transportable, user safety precaution, and offer multiple mode of training potentials. This paper presents the measurements implemented in the system to determine the requirements for finger and hand rehabilitation device, the design and characteristic of the whole system. 


Author(s):  
Xiang Qian Shi ◽  
Ho Lam Heung ◽  
Zhi Qiang Tang ◽  
Kai Yu Tong ◽  
Zheng Li

Stroke has been the leading cause of disability due to the induced spasticity in the upper extremity. The constant flexion of spastic fingers following stroke has not been well described. Accurate measurements for joint stiffness help clinicians have a better access to the level of impairment after stroke. Previously, we conducted a method for quantifying the passive finger joint stiffness based on the pressure-angle relationship between the spastic fingers and the soft-elastic composite actuator (SECA). However, it lacks a ground-truth to demonstrate the compatibility between the SECA-facilitated stiffness estimation and standard joint stiffness quantification procedure. In this study, we compare the passive metacarpophalangeal (MCP) joint stiffness measured using the SECA with the results from our designed standalone mechatronics device, which measures the passive metacarpophalangeal joint torque and angle during passive finger rotation. Results obtained from the fitting model that concludes the stiffness characteristic are further compared with the results obtained from SECA-Finger model, as well as the clinical score of Modified Ashworth Scale (MAS) for grading spasticity. These findings suggest the possibility of passive MCP joint stiffness quantification using the soft robotic actuator during the performance of different tasks in hand rehabilitation.


2021 ◽  
pp. 1-14 ◽  
Author(s):  
Chris McGibbon ◽  
Andrew Sexton ◽  
Arun Jayaraman ◽  
Susan Deems-Dluhy ◽  
Eric Fabara ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4874
Author(s):  
San-Ha Kim ◽  
Jae-Young Han ◽  
Min-Keun Song ◽  
In-Sung Choi ◽  
Hyeng-Kyu Park

Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disorder that presents as ataxia. Due to the decline in balance, patients with SCA often experience restricted mobility and a decreased quality of life. Thus, many studies have emphasized the importance of physiotherapies, including gait training, in SCA patients. However, few studies have examined the effectiveness of robotic gait training in SCA. Here, we report the therapeutic outcomes of exoskeleton-assisted gait training in a patient with SCA. A 23-year-old woman with SCA participated in a gait training program using a powered lower-limb robotic exoskeleton, ANGELLEGS. The 8-week training program consisted of standing training, weight-shifting exercises, and gait training. Several measures of general function, balance, gait, and cardiopulmonary function were applied before, after, and 4 weeks after the program. After the program, overall improvements were found on scales measuring balance and gait function, and these improvements remained at 4 weeks after the program. Cardiopulmonary function was also improved 4 weeks after the program. Robotic exoskeleton gait training can be a beneficial option for training balance, gait, and cardiopulmonary function in SCA.


Sign in / Sign up

Export Citation Format

Share Document