Power Supply of Resistance Welding Machine with Reactive Power Compensation

Author(s):  
Svetlana Podnebennaya ◽  
Vladimir Burlaka ◽  
Sergey Gulakov
2022 ◽  
Vol 1 (15) ◽  
pp. 22-28
Author(s):  
Igor' Golovanov ◽  
Alena Alekseeva ◽  
Vladimir Proskuryakov ◽  
Roman Samchuk

Electrical circuits of reactive power compensation on the basis of thyristor control circuits in the power supply system of oil refineries are considered. The main advantages, advantages over traditional reactive power compensation systems and directions of introduction into the power supply system of modern production are formulated.


2015 ◽  
pp. 29-33
Author(s):  
V. A. Kopyrin ◽  
V. A. Iordan ◽  
O. V. Smirnov

The authors provide a method for compensation of the reactive power inside a well. In the environment Matlab/ Simylink a model was developed of the site of the electrical centrifugal pump unit power supply from the transformer substation. A comparison is made of the proposed method of downhole reactive power compensation with the existing method.


2019 ◽  
Vol 110 ◽  
pp. 01010
Author(s):  
Vasiliy Cheremisin ◽  
Andrey Nikonov

The article presents a method for selecting the parameters of the current-voltage characteristics of adjustable reactive power compensation devices used at sectioning stations of railway sections electrified by alternating current with a voltage of 27.5 kV. This technique is based on the experience of operating two types of devices in the traction power supply system. Power control of these devices is implemented by the voltage level at the switching point. Selection of the setpoint voltage and slope characteristics was done. The developed method allows increasing the efficiency of devices by eliminating the voltage losses on the active component of traction loads. That will reduce the loss of electricity in the system of traction power supply. Changing the parameters of the characteristics will increase the relationship between the reactive power consumed in the zone and the voltage measured by the devices. Following the results of the formation of the methodology, an example of the choice of characteristics for a real compensation device is presented.


2019 ◽  
Vol 146 ◽  
pp. 714-718
Author(s):  
Claus-Peter Käsemann ◽  
Igor Goldstein ◽  
Christian Jacob ◽  
Michael Rott ◽  
Michael Schandrul

Author(s):  
Hye-Seong Heo ◽  
Ki-Won Park ◽  
In-Chol Jeong ◽  
Hyun-Seok Shin ◽  
Jae-An Park ◽  
...  

2013 ◽  
Vol 321-324 ◽  
pp. 1414-1417 ◽  
Author(s):  
Jing Chen ◽  
Qi Jian Cheng ◽  
You Xin Yuan ◽  
Wei Yang

The objective of this work is to research on a SVC auto-compensation method to improve the power factor of the power supply system. Firstly, the principles of the reactive power compensation of FC+TCR are analyzed qualitatively. According to the deficiencies of this compensator, a novel SVC auto-compensating method based on the variable reactor is presented. The reactor controlled by anti-parallel thyristors is namely as the variable reactor in this method. The secondary-side equivalent inductance of the variable reactor is varied by adjusting the SCR firing angles. And then, the equivalent inductance of the variable reactor of the compensator branch is adjusted indirectly for compensating the corresponding reactive power after the working conditions of the load are changed. Therefore, the auto-compensating of this var compensator is realized. The auto-compensating principles of this compensator have been analyzed, and a research on the compensating parameters of this compensator is given emphatically in this paper. Finally, the essential operation steps of this SVC compensation method are given. The research of this paper has laid a theoretical foundation for this compensator in industrial applications.


Author(s):  
V.Z Manusov ◽  
P.V. Matrenin ◽  
N. Khasanzoda

Optimization of a power supply system is one of the main directions in power engineering research. The reactive power compensation reduces active power losses in transmission lines. In general, researches devoted to allocation and control of the compensation units consider this issue as a static optimization problem. However, it is dynamic and stochastic optimization problem that requires a real-time solution. To solve the dynamic optimization NP-hard problem, it is advisable to use Swarm Intelligence. This research deals with the problem of the compensation units power control as a dynamic optimization problem, considering the possible stochastic failures of the compensation units. The Particle Swarm Optimization and the Bees Algorithm were applied to solve it to compare the effectiveness of these algorithms in the dynamic optimization of a power supply system.


Author(s):  
Elena Ivanovna Gracheva ◽  
Muhayo Islomovna Toshkhodzhaeva ◽  
Okhunbobo Saifidinovich Rakhimov ◽  
Ayubjon Jumaevich Vohidov ◽  
Ismoiljon Ilkhomovich Ismoilov

Sign in / Sign up

Export Citation Format

Share Document