scholarly journals Real-world speed estimation using single trunk IMU: methodological challenges for impaired gait patterns*

Author(s):  
Anisoara Paraschiv-Ionescu ◽  
Abolfazl Soltani ◽  
Kamiar Aminian
2021 ◽  
Vol 13 (4) ◽  
pp. 573
Author(s):  
Navaneeth Balamuralidhar ◽  
Sofia Tilon ◽  
Francesco Nex

We present MultEYE, a traffic monitoring system that can detect, track, and estimate the velocity of vehicles in a sequence of aerial images. The presented solution has been optimized to execute these tasks in real-time on an embedded computer installed on an Unmanned Aerial Vehicle (UAV). In order to overcome the limitation of existing object detection architectures related to accuracy and computational overhead, a multi-task learning methodology was employed by adding a segmentation head to an object detector backbone resulting in the MultEYE object detection architecture. On a custom dataset, it achieved 4.8% higher mean Average Precision (mAP) score, while being 91.4% faster than the state-of-the-art model and while being able to generalize to different real-world traffic scenes. Dedicated object tracking and speed estimation algorithms have been then optimized to track reliably objects from an UAV with limited computational effort. Different strategies to combine object detection, tracking, and speed estimation are discussed, too. From our experiments, the optimized detector runs at an average frame-rate of up to 29 frames per second (FPS) on frame resolution 512 × 320 on a Nvidia Xavier NX board, while the optimally combined detector, tracker and speed estimator pipeline achieves speeds of up to 33 FPS on an image of resolution 3072 × 1728. To our knowledge, the MultEYE system is one of the first traffic monitoring systems that was specifically designed and optimized for an UAV platform under real-world constraints.


2021 ◽  
Author(s):  
Sarah Hood ◽  
Lukas Gabert ◽  
Tommaso Lenzi

Powered prostheses can enable individuals with above-knee amputations to ascend stairs step-over-step. To accomplish this task, available stair ascent controllers impose a pre-defined joint impedance behavior or follow a pre-programmed position trajectory. These control approaches have proved successful in the laboratory. However, they are not robust to changes in stair height or cadence, which is essential for real-world ambulation. Here we present an adaptive stair ascent controller that enables individuals with above-knee amputations to climb stairs of varying stair heights at their preferred cadence and with their preferred gait pattern. We found that modulating the prosthesis knee and ankle position as a function of the user’s thigh in swing provides toe clearance for varying stair heights. In stance, modulating the torque-angle relationship as a function of the prosthesis knee position at foot contact provides sufficient torque assistance for climbing stairs of different heights. Furthermore, the proposed controller enables individuals to climb stairs at their preferred cadence and gait pattern, such as step-by-step, step-over-step, and two-steps. The proposed adaptive stair controller may improve the robustness of powered prostheses to environmental and human variance, enabling powered prostheses to more easily move from the lab to the real-world.


2020 ◽  
Author(s):  
Sarah Hood ◽  
Lukas Gabert ◽  
Tommaso Lenzi

Powered prostheses can enable individuals with above-knee amputations to ascend stairs step-over-step. To accomplish this task, available stair ascent controllers impose a pre-defined joint impedance behavior or follow a pre-programmed position trajectory. These control approaches have proved successful in the laboratory. However, they are not robust to changes in stair height or cadence, which is essential for real-world ambulation. Here we present an adaptive stair ascent controller that enables individuals with above-knee amputations to climb stairs of varying stair heights at their preferred cadence and with their preferred gait pattern. We found that modulating the prosthesis knee and ankle position as a function of the user’s thigh in swing provides toe clearance for varying stair heights. In stance, modulating the torque-angle relationship as a function of the prosthesis knee position at foot contact provides sufficient torque assistance for climbing stairs of different heights. Furthermore, the proposed controller enables individuals to climb stairs at their preferred cadence and gait pattern, such as step-by-step, step-over-step, and two-step, similar to able-bodied individuals. We anticipate the proposed control strategy will improve the robustness of powered prostheses to environmental and human variance without the need for expert tuning, machine learning, or direct subject intervention, which may enable powered prostheses to more easily move from the lab to the real-world.


2020 ◽  
Vol 24 (3) ◽  
pp. 658-668 ◽  
Author(s):  
Abolfazl Soltani ◽  
Hooman Dejnabadi ◽  
Martin Savary ◽  
Kamiar Aminian

2010 ◽  
Vol 34-35 ◽  
pp. 512-516
Author(s):  
Jun Xu ◽  
Meng Yi Zhu ◽  
Bo Han Liu ◽  
Yue Ting Sun ◽  
Yi Bing Li

Pedestrian-vehicle accident without road marks has long been a headache to accident investigators. This paper suggested a new method with the application of fracture mechanics to estimate impact speed in pedestrian-vehicle. Firstly, a windshield crack propagation model based on the crack initiation model put forward by Freund [1] is established. In the model, crack bluntness coefficient is an unknown parameter, depending on various factors, so speed domain is then divided into five intervals and sample real-world accident cases are employed to the calibrate crack bluntness coefficient in different speed intervals. Further, fourth-order Runge Kutta’s method is used to solve the differential equation. Five additional real-world accident cases are then employed to verify the accuracy of the model. Results show good agreement between the model results and the real impact speeds. Finally, the advantages and limitations of this method are discussed.


Author(s):  
D. Bell ◽  
W. Xiao ◽  
P. James

Abstract. A workflow is devised in this paper by which vehicle speeds are estimated semi-automatically via fixed DSLR camera. Deep learning algorithm YOLOv2 was used for vehicle detection, while Simple Online Realtime Tracking (SORT) algorithm enabled for tracking of vehicles. Perspective projection and scale factor were dealt with by remotely mapping corresponding image and real-world coordinates through a homography. The ensuing transformation of camera footage to British National Grid Coordinate System, allowed for the derivation of real-world distances on the planar road surface, and subsequent simultaneous vehicle speed estimations. As monitoring took place in a heavily urbanised environment, where vehicles frequently change speed, estimations were determined consecutively between frames. Speed estimations were validated against a reference dataset containing precise trajectories from a GNSS and IMU equipped vehicle platform. Estimations achieved an average root mean square error and mean absolute percentage error of 0.625 m/s and 20.922 % respectively. The robustness of the method was tested in a real-world context and environmental conditions.


Author(s):  
Plinio P. Morita ◽  
Adson S. Rocha ◽  
George Shaker ◽  
Doojin Lee ◽  
Jing Wei ◽  
...  

In light of our aging population, there is an immediate need for non-obtrusive, continuous, and ubiquitous health monitoring technologies that will enable our population to age with a higher quality of life and independence. Research has demonstrated that gait indicators, such as walking speed, can reflect cognitive and physical functioning. However, gradual changes in such indicators usually go undetected until critical problems arise; being able to detect changes in indicators, such as gait deterioration, of older adults while in their home environments would enable clinicians to tailor more effective and personalized interventions by better understanding user behaviour in real-world settings. Real-world data is essential to enabling our healthcare system to act where patients most need help and to optimize the effect of designed eHealth solutions.


Author(s):  
Lowell Rose ◽  
Michael C. F. Bazzocchi ◽  
Connal de Souza ◽  
Julie Vaughan-Graham ◽  
Kara Patterson ◽  
...  

Abstract Stroke is a leading cause of disability, and robotic lower body exoskeletons have been developed to aid in gait rehabilitation. The simulation modeling and testing processes are often developed and deployed separately. This introduces additional steps which can hinder on-the-fly customization of gait patterns required for individualized gait rehabilitation. In this paper, we present a centralized control architecture which integrates both the simulated model and the exoskeleton hardware for lower body exoskeletons. The architecture allows for ease of simulating, adapting, and deploying gait patterns on an exoskeleton for use in gait rehabilitation, and allows for the on-the-fly customization and verification of gait patterns by physiotherapists during rehabilitation. Experiments validate the use of our overall control architecture to both model and control a physical exoskeleton, while following desired gait patterns.


Sign in / Sign up

Export Citation Format

Share Document