Walking Pole Gait to Reduce Joint Loading post Total Knee Athroplasty: Musculoskeletal modeling Approach

Author(s):  
Oishee Mazumder ◽  
Murali Poduval ◽  
Avik Ghose ◽  
Aniruddha Sinha
Author(s):  
Jana Holder ◽  
Ursula Trinler ◽  
Andrea Meurer ◽  
Felix Stief

The assessment of knee or hip joint loading by external joint moments is mainly used to draw conclusions on clinical decision making. However, the correlation between internal and external loads has not been systematically analyzed. This systematic review aims, therefore, to clarify the relationship between external and internal joint loading measures during gait. A systematic database search was performed to identify appropriate studies for inclusion. In total, 4,554 articles were identified, while 17 articles were finally included in data extraction. External joint loading parameters were calculated using the inverse dynamics approach and internal joint loading parameters by musculoskeletal modeling or instrumented prosthesis. It was found that the medial and total knee joint contact forces as well as hip joint contact forces in the first half of stance can be well predicted using external joint moments in the frontal plane, which is further improved by including the sagittal joint moment. Worse correlations were found for the peak in the second half of stance as well as for internal lateral knee joint contact forces. The estimation of external joint moments is useful for a general statement about the peak in the first half of stance or for the maximal loading. Nevertheless, when investigating diseases as valgus malalignment, the estimation of lateral knee joint contact forces is necessary for clinical decision making because external joint moments could not predict the lateral knee joint loading sufficient enough. Dependent on the clinical question, either estimating the external joint moments by inverse dynamics or internal joint contact forces by musculoskeletal modeling should be used.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Bobbie S. Irmischer ◽  
Zachary A. Sievert

Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care.


Author(s):  
Tanner Thorsen ◽  
Chen Wen ◽  
Songning Zhang

Abstract The purpose of this study was to determine how tibiofemoral joint compressive forces and knee joint-spanning muscle forces during uphill walking change compared to level walking in patients with total knee arthroplasty (TKA). A musculoskeletal model capable of resolving total (TCF), medial (MCF), and lateral (LCF) tibiofemoral compressive forces was used to determine compressive forces and muscle forces during level and uphill walking on a 10° incline for twenty-five post TKA patients. A 2?2 (slope: level and 10° ? limb: replaced and non-replaced) repeated measures ANOVA was used to detect differences in knee contact forces between slope and limb conditions and their interaction. Peak loading-response TCF, MCF, and LCF were greater during uphill walking than level walking for non-replaced limbs. During uphill walking, peak loading-response TCF was smaller in the replaced limb compared to non-replaced limbs with no change in MCF or LCF. Peak knee extension moment and knee extensor muscle force were smaller in replaced limbs compared to non-replaced limbs during uphill walking. During level walking, replaced and non-replaced limbs experienced rather equal joint loading, however replaced limb experienced reduced joint loading during uphill walking. Differences in joint loading between replaced and non-replaced limbs were not present during level walking, suggesting compensation from the replaced limb during the more difficult task. Uphill walking following TKA promotes more balanced loading of replaced limbs during stance, however these benefits may come at the expense of increased loading on non-replaced limbs.


Author(s):  
Qida Zhang ◽  
Zhenxian Chen ◽  
Zhifeng Zhang ◽  
Zhongmin Jin ◽  
Orhun K Muratoglu ◽  
...  

Bi-cruciate retaining total knee arthroplasty has several potential advantages including improved anteroposterior knee stability compared to contemporary posterior cruciate-retaining total knee arthroplasty. However, few studies have explored whether there is significant differences of knee biomechanics following bi-cruciate retaining total knee arthroplasty compared to posterior cruciate-retaining total knee arthroplasty. In the present study, subject-specific lower extremity musculoskeletal multi-body dynamics models for bi-cruciate retaining, bi-cruciate retaining without anterior cruciate ligament, and posterior cruciate-retaining total knee arthroplasty were developed based on the musculoskeletal modeling framework using force-dependent kinematics method and validated against in vivo telemetric data. The experiment data of two subjects who underwent total knee arthroplasty were obtained for the SimTK “Grand Challenge Competition” repository, and integrated into the musculoskeletal model. Five walking gait trials for each subject were used as partial inputs for the model to predict the knee biomechanics for bi-cruciate retaining, bi-cruciate retaining without anterior cruciate ligament, and posterior cruciate-retaining total knee arthroplasty. The results revealed significantly greater range of anterior/posterior tibiofemoral translation, and significantly more posterior tibial location during the early phase of gait and more anterior tibial location during the late phase of gait were found in bi-cruciate retaining total knee arthroplasty without anterior cruciate ligament when compared to the bi-cruciate retaining total knee arthroplasty. No significant differences in tibiofemoral contact forces, rotations, translations, and ligament forces between bi-cruciate retaining and posterior cruciate-retaining total knee arthroplasty during normal walking gait, albeit slight differences in range of tibiofemoral internal/external rotation and anterior/posterior translation were observed. The present study revealed that anterior cruciate ligament retention has a positive effect on restoring normal knee kinematics in bi-cruciate retaining total knee arthroplasty. Preservation of anterior cruciate ligament in total knee arthroplasty and knee implant designs interplay each other and both contribute to restoring normal knee kinematics in different types of total knee arthroplasty. Further evaluation of more demanding activities and subject data from patients with bi-cruciate retaining and posterior cruciate-retaining total knee arthroplasty via musculoskeletal modeling may better highlight the role of the anterior cruciate ligament and its stabilizing influence.


Author(s):  
Marco Viceconti ◽  
Cristina Curreli ◽  
Francesca Bottin ◽  
Giorgio Davico

AbstractThe optimal neuromuscular control (muscle activation strategy that minimises the consumption of metabolic energy) during level walking is very close to that which minimises the force transmitted through the joints of the lower limbs. Thus, any suboptimal control involves an overloading of the joints. Some total knee replacement patients adopt suboptimal control strategies during level walking; this is particularly true for patients with co-morbidities that cause neuromotor control degeneration, such as Parkinson’s Disease (PD). The increase of joint loading increases the risk of implant failure, as reported in one study in PD patients (5.44% of failures at 9 years follow-up). One failure mode that is directly affected by joint loading is massive wear of the prosthetic articular surface. In this study we used a validated patient-specific biomechanical model to estimate how a severely suboptimal control could increase the wear rate of total knee replacements. Whereas autopsy-retrieved implants from non-PD patients typically show average polyethylene wear of 17 mm3 per year, our simulations suggested that a severely suboptimal control could cause a wear rate as high as of 69 mm3 per year. Assuming the risk of implant failure due to massive wear increase linearly with the wear rate, a severely suboptimal control could increase the risk associated to that failure mode from 0.1% to 0.5%. Based on these results, such increase would not be not sufficient to justify alone the higher incidence rate of revision in patients affected by Parkinson’s Disease, suggesting that other failure modes may be involved.


2021 ◽  
Author(s):  
Kieran Bennett ◽  
Claudio Pizzolato ◽  
Saulo Martelli ◽  
Jasvir Bahl ◽  
Arjun Sivakumar ◽  
...  

<p>We investigated three different methods for simulating neuromusculoskeletal (NMS) control to generate estimates of knee joint loading which were compared to in-vivo measured loads. The major contributions of this work to the literature are in generalizing EMG-informed and probabilistic methods for modelling NMS control.</p> <p>A single calibration function for EMG-informed NMS modelling was identified which accurately estimated knee loads for multiple people across multiple trials. Using a stochastic approach to NMS modelling, we investigated the range of possible solutions for knee joint loading during walking, showing the method's generalizability and capability to generate solutions which encompassed the measured knee loads. Through this stochastic approach, we were able to show that a single degree of freedom planar knee is suited to estimating total knee loading, but is insufficient for estimating the directional components of load.</p> <p> </p>


Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e545-e546
Author(s):  
K. Hata ◽  
R. Kiyama ◽  
Y. Ishido ◽  
K. Yone ◽  
K. Fukudome ◽  
...  

10.29007/7dsg ◽  
2019 ◽  
Author(s):  
Maria Paz Quilez ◽  
Hendrik Pieter Delport ◽  
Roel Wirix-Speetjens ◽  
Mariska Wesseling ◽  
Maria Angeles Perez Anson ◽  
...  

Total knee arthroplasty (TKA) is a reliable surgical procedure, yet up to a fifth of primary implant patients remains unsatisfied. Musculoskeletal modeling (MSM) has the potential to explore the relationship between implant alignment and functional outcome [3]. Consequently, implant alignment can be quantitatively optimized to restore the pre- TKA joint behavior and, therefore, achieve the most favorable functional outcome for the specific patient. For this reason, we developed a method to optimize the implant alignment, with the aim of restoring the native kinematics and ligament elongations of the patient before undergoing TKA. Subject-specific optimization towards ligament elongations demonstrated to accurately emulate the pre-TKA ligament behavior, in contrast to the mechanically aligned approach. However, the values of the optimized implant positions resulting from the pre-TKA kinematic optimization were extreme in some cases. The presented modelling approach is a promising starting point for allowing surgeons to evaluate the patient-specific implant alignment and restore the patient- specific biomechanics.


The Knee ◽  
2018 ◽  
Vol 25 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Du Hyun Ro ◽  
Hyuk-soo Han ◽  
Seong Hwan Kim ◽  
Yoon-Ho Kwak ◽  
Jae-Young Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document