scholarly journals Simultaneous Control of Tonic Vibration Reflex and Kinesthetic Illusion for Elbow Joint Motion Toward Novel Robotic Rehabilitation

Author(s):  
Kazuo Kiguchi ◽  
Kanta Maemura
Author(s):  
Patrick J. Schimoler ◽  
Jeffrey S. Vipperman ◽  
Laurel Kuxhaus ◽  
Angela M. Flamm ◽  
Daniel D. Budny ◽  
...  

The many muscles crossing the elbow joint allow for its motions to be created from different combinations of muscular activations. Muscles are strictly contractile elements and the joints they surround rely on varying loads from opposing antagonists for stability and movement. In designing a control system to actuate an elbow in a realistic manner, unidirectional, tendon-like actuation and muscle co-activation must be considered in order to successfully control the elbow’s two degrees of freedom. Also important is the multifunctionality of certain muscles, such as the biceps brachii, which create moments impacting both degrees of freedom: flexion / extension and pronation / supination. This paper seeks to develop and implement control algorithms on an elbow joint motion simulator that actuates cadaveric elbow specimens via four major muscles that cross the elbow joint. The algorithms were validated using an anatomically-realistic mechanical elbow. Clinically-meaningful results, such as the evaluation of radial head implants, can only be obtained under repeatable, realistic conditions; therefore, physiologic motions must be created by the application of appropriate loads. This is achieved by including load control on the muscles’ actuators as well as displacement control on both flexion / extension and supination / pronation.


Author(s):  
Patrick J. Schimoler ◽  
Jeffrey S. Vipperman ◽  
Laurel Kuxhaus ◽  
Daniel D. Budny ◽  
Angela M. Flamm ◽  
...  

Joint motion simulators (JMS’s) have been developed for many applications enabling the repeatable testing of prostheses, scientific investigations of joint mechanics and the study of surgical procedures.[1–4] Although Morrey has reported that radial head implants have lower post-operative satisfaction than other joint implants[5] and Dunning has examined several issues with radial heads, many problems remain.[6] It is therefore beneficial to develop a simulator capable of evaluating radial head implants. A robust simulator can also provide the ability to test soft tissue strains at the elbow and compare control schemes that may elucidate the body’s means of controlling multiaxial multimuscle systems.


Author(s):  
Keya Ghonasgi ◽  
Ana C. de Oliveira ◽  
Anna Shafer ◽  
Chad G. Rose ◽  
Ashish D. Deshpande
Keyword(s):  

2016 ◽  
Vol 823 ◽  
pp. 107-112
Author(s):  
Dan Mândru ◽  
Olimpiu Tǎtar ◽  
Simona Noveanu ◽  
Alexandru Ianoşi-Andreeva-Dimitrova

Based on upper limb’s biomechanisms, in this paper, a robotic rehabilitation system is presented. It is designed as a 4 DOFs wearable exoskeleton applicable for repetitive practice of passive or active movements of the arm in shoulder joint and forearm in elbow joint. The kinematic analysis of the proposed system is followed by the 3D model and a description of the developed prototype.


Sign in / Sign up

Export Citation Format

Share Document