Study and comparison of several permanent-magnet excited rotor types regarding their applicability in electric vehicles

Author(s):  
Thomas Finken ◽  
Marco Hombitzer ◽  
Kay Hameyer
2021 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Ali Al-Qarni ◽  
Ayman EL-Refaie

This paper covers a new emerging class of electrical machines, namely, Magnetic Gears (MGs) and Magnetically Geared Machines (MGMs). This particular kind of gears/machines is capable of either scaling up or down the revolutions-per-minute to meet various load profiles as in the case of mechanical gearboxes, but with physical isolation between the rotating components. This physical isolation between the rotational components leads to several advantages in favor of MGs and MGMs over mechanical gearboxes. Although MGs and MGMs can potentially provide a solution for some of the practical issues of mechanical gears, MGs and MGMs have two major challenges that researchers have been trying to address. Those challenges are the high usage of rare-earth Permanent Magnet (PM) materials and the relatively complex mechanical structure of MGs and MGMs, both of which are a consequence of the multi-airgap design. This paper presents designs that reduce the PM rare-earth content for Electric Vehicles (EVs). Additionally, the paper will ensure having practical designs that do not run the risk of permanent demagnetization. The paper will also discuss some new designs to simplify the mechanical structure.


Author(s):  
Yang Xiao ◽  
Z.Q. Zhu ◽  
Shensheng Wang ◽  
Geraint Jewell ◽  
Jin Tao Chen ◽  
...  

2008 ◽  
Vol 103 (7) ◽  
pp. 07F103 ◽  
Author(s):  
Chuang Yu ◽  
K. T. Chau ◽  
Xinhua Liu ◽  
J. Z. Jiang

2021 ◽  
Vol 39 (3A) ◽  
pp. 394-406
Author(s):  
Mustafa Y. Bdewi ◽  
Ahmed M. Mohammed ◽  
Mohammed M. Ezzaldean

In electrical vehicle applications, power density plays a significant role in improving machine performance. The main objective of this paper is to design and analyze the performance of in-wheel outer rotor permanent magnet synchronous motor (PMSM) used in electric vehicles based on a previously designed model. The key challenge is to achieve the best machine performance regarding the highest torque density and lowest torque ripple. This work also aims at reducing the machine cost by using permanent magnet (PM) material, which has less energy density than the PM used in the previously designed model. An optimization procedure is carried out to improve the generated torque, keeping the same aspects of size and volume of the selected machine. On the other hand, the other specifications of the machine are taken into consideration and are maintained within the acceptable level. According to their major impact on the machine’s performance, the most important parameters of machine designing is selected during the optimization procedure. This proposed machine is implemented and tested using the finite element software package “MagNet 7.4.1” with Visual Basic 16.0 programming language and MATLAB 9.5 Simulink for post-processing.


Sign in / Sign up

Export Citation Format

Share Document