Voltage support and damping of low frequency oscillations in a large scale power system using STATCOM

Author(s):  
H. Hasanvand ◽  
B. Bakhshideh Zad ◽  
A. Parastar ◽  
J. Lobry ◽  
F. Vallee
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


Author(s):  
Jose A. GONZALEZ-ESCRIVA ◽  
Josep R. MEDINA ◽  
Joaquin M. GARRIDO

ARJ-R caissons are based on the "long-circuit" concept (Medina et al, 2016) that allows the extension of the destructive wave interference mechanism to mitigate low frequency oscillations without enlarging the width of the caisson. The performance of the ARJ-R caissons is referred to its reflection coefficient (Cr) which was obtained through large-scale physical model tests (Gonzalez-Escriva et al, 2018). In this paper, the effectiveness of Anti-Reflective Jarlan-type structures for Port Resonance mitigation (ARJ-R) has been assessed numerically for the port of Denia (Spain). ARJ-R structures are constructible, with similar dimensions as conventional vertical quay caissons and with a similar cost (15percent more than conventional vertical caisson).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/LomQEVpvjik


Author(s):  
Swathi Kommamuri ◽  
P. Sureshbabu

Power system stability improvement by a coordinate Design ofThyristor Controlled Series Compensator (TCSC) controller is addressed in this paper.Particle Swarm Optimization (PSO) technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.


Author(s):  
Sourav Paul ◽  
Provas Kumar Roy

Low frequency oscillation has been a major threat in large interconnected power system. These low frequency oscillations curtain the power transfer capability of the line. Power system stabilizer (PSS) helps in diminishing these low frequency oscillations by providing auxiliary control signal to the generator excitation input, thereby restoring stability of the system. In this chapter, the authors have incorporated the concept of oppositional based learning (OBL) along with differential search algorithm (DSA) to solve PSS problem. The proposed technique has been implemented on both single input and dual input PSS, and comparative study has been done to show the supremacy of the proposed techniques. The convergence characteristics as well authenticate the sovereignty of the considered algorithms.


Sign in / Sign up

Export Citation Format

Share Document