Adaptive control schemes for stabilizing switching frequency of sliding mode controlled power converters

Author(s):  
Siew-Chong Tan ◽  
Y.M. Lai ◽  
C.K. Tse
Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 65 ◽  
Author(s):  
Amjad Humaidi ◽  
Akram Hameed

This paper investigates the performance of two different adaptive control schemes for controlling the angular position of an electronic throttle (ET) plate. The adaptive backstepping controller and adaptive sliding mode backstepping controller are the controllers under consideration. The control design based on these adaptive controllers is firstly addressed and the stability analysis of each controller has been presented and the convergence of both position and estimation errors for both controllers have been proved. A comparison study of the performance of both controllers has been conducted in terms of system transient characteristics and the behavior of their associated adaptive gain. The simulation has been implemented within the environment of the MATLAB package.


2001 ◽  
Author(s):  
Pablo Carbonell ◽  
Xiaodong Wang ◽  
Zhong-Ping Jiang

Abstract We present a study on the suppression of flow-induced vibration using a simple control algorithm with an assumption that the disturbance as well as the system parameters are bounded variables. By introducing three different control signals, we explore three schemes, namely, robust control, sliding mode, and adaptive control. The control schemes are implemented numerically with a few illustrative examples, which includes a bounded chaotic system. It is demonstrated that all three schemes can be effectively used for fluid-structure interaction systems. In addition, with these numerical examples, we also illustrate various advantages and disadvantages of different control schemes. In general, robust control and adaptive control schemes are (globally) ultimately uniformly bounded, whereas sliding mode scheme is (globally) asymptotically stable. Thus, as we further reduce the integration time step, the residual of robust control and adaptive control schemes will approach to a bounded (finite) asymptotic function, and the residual of sliding mode scheme will approach to zero. Furthermore, due to self-tuning, the gain of adaptive control scheme is relatively small, yet, the computation cost is higher because of the excessively small time step requirement for the numerical integration. With respect to sliding mode scheme, the control signal is discontinuous due to the sign function and consequently, the practical implementation has fast switching fluctuations (chattering).


1995 ◽  
Vol 05 (03) ◽  
pp. 355-371 ◽  
Author(s):  
J. FERNANDO SILVA

This paper presents state-of-the-art application of Sliding Mode Control theory, to improve the performance and to integrate the modulator and control electronics design of power converters. This approach eliminates conventional PWM modulators and loop linear PI regulators, reducing the converter complexity, weight and volume, which increases its power density figure. Sliding Mode Control techniques are used to obtain, from the controllability canonical system model, the control law, a linear combination of state variable errors and its derivatives, whose implementation is a simple circuit, that directly generates the drive pulses for the semiconductors. The commutation strategy implements a power converter with better performances than conventional PWM controlled ones, faster response and robustness concerning circuit parameter variations and operating conditions. This non linear control approach provides zero steady-state error and, by the subtle use of limiters, short circuit ouput current limitation. Using a simple 3 level clock, it is also shown how to obtain a sliding mode controller with constant switching frequency and zero steady-state error.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Sign in / Sign up

Export Citation Format

Share Document