Measurement of activation products in chloride salts irradiated by spallation neutrons

Author(s):  
Dusan Kral ◽  
Miroslav Zeman ◽  
Jindrich Adam ◽  
Karel Katovsky ◽  
Josef Svoboda ◽  
...  
1989 ◽  
Vol 61 (03) ◽  
pp. 386-391 ◽  
Author(s):  
Guido Tans ◽  
Truus Janssen-Claessen ◽  
Jan Rosing

SummaryIn this paper we report a method via which enzymatically active products formed during prothrombin activation can be detected by simple photographic means after SDS-gel electrophoresis, blotting onto a nitrocellulose membrane and visualization with the chromogenic substrate, S2238. After amidolytic detection the same nitrocellulose membrane can also be used for immunologic detection of prothrombin activation products, thus allowing a complete description of product formation during prothrombin activation.The detection limit of the so-called “amidoblot” is approximately 3 ng thrombin per gel sample which is comparable to the sensitivity of immunoblotting.It is further shown that the amidoblot technique can also be applied to other coagulation factors for which a suitable chromogenic substrate is available (factor XIIa, kallikrein, factor XIa, factor Xa, plasmin and activated protein C).


1991 ◽  
Vol 65 (04) ◽  
pp. 382-388 ◽  
Author(s):  
Dulce Veloso ◽  
Robert W Colman

SummaryPrekallikrein (PK), a zymogen of the contact system, and its activation products, kallikrein (KAL), KAl-inhibitor complexes and fragments containing KAL epitope(s) have been detected in human plasma by immunoblotting with a monoclonal anti-human plasma PK antibody, MAb 13G1L. Detection of antigen-MAb 13G11 complexes with peroxidase-conjugated anti-IgG showed that the two variants of PK (85- and 88-kDa) are the only major antigen species in normal, non-activated plasma. Upon plasma activation with kaolin, the intensity of the PK bands decreased with formation of complexes of KAL with CL inhibitor (C1 INH) and α2-rrtzcroglobulin (α2M) identical to those formed by the purified proteins. Immunoblots of normal plasma showed good correlation between the PK detected and the amount of plasma assayed. Increasing amounts of KAL incubated with a constant volume of PK-deficient plasma showed increasing amounts of KAL and of KAL-C1 INH and KAL-α2M complexes. Complexes of KALantithrombin III (ATIII) and the ratio of KALα2M/ KAL-CL INH were higher in activated CL INH-deficient plasmas than in activated normal plasmas. Protein resolution by 3-12% gradient SDS-PAGE and epitope detection with [125I]MAb 13G11 showed four KALα2M species and a 45-kDa fragment(s) in both surface-activated normal plasma and complexes formed by purified KAL and α2M. Immunoblots of activated plasma also showed bands at the position of KALCL INH and KALATIII complexes. When α1-antitrypsin Pittsburgh (cα1-AT, Pitts) was added to plasma before activation, KAL-α1-ALPitts was the main complex. The non-activated normal plasma revealed only an overloaded PK band. This is the first report of an antibody that recognizes KAL epitope(s) in KAL-α2M, KALATIII and KALa1-α1Pitts complexes and in the 45-kDa fragment(s). Therefore, MAb 13G11 should be useful for studying the structure of these complexes as well as the mechanism of complex formation. In addition, immunoblotting with MAb 13G11 would allow detection of KAl-inhibitor complexes in patient plasmas as indicators of activation of the contact system.


1962 ◽  
Vol 08 (03) ◽  
pp. 425-433 ◽  
Author(s):  
Ewa Marciniak ◽  
Edmond R Cole ◽  
Walter H Seegers

SummarySuitable conditions were found for the generation of autoprothrombin C from purified prothrombin with the use of Russell’s viper venom or trypsin. DEAE chromatographed prothrombin is structurally altered and has never been found to yield autoprothrombin C and also did not yield it when Russell’s viper venom or trypsin were used. Autoprothrombin C is derived from prothrombin with tissue extract thromboplastin, but not in large amounts with the intrinsic clotting factors. With the latter thrombin and autoprothrombin III are the chief activation products. Autoprothrombin III concentrates were prepared from serum and upon activation with 25% sodium citrate solution or with Russell’s viper venom large amounts of autoprothrombin C were obtained, and this was of high specific activity. Theoretically trypsin is not a thrombolytic agent, but on the contrary should lead to intravascular clotting.


2014 ◽  
Vol 798-799 ◽  
pp. 269-274 ◽  
Author(s):  
Gustavo de Castro Xavier ◽  
Jonas Alexandre ◽  
Paulo César de Almeida Maia ◽  
Fernando Saboya Albuquerque ◽  
Leonardo Gonçalves Pedroti ◽  
...  

Clay ceramic materials exposed to a marine environment may be subjected to complete degradation due to the presence of chloride salts in the air. The exposition allows the chloride to penetrate in structural pores causing an internal expansion, which eventually split the ceramic apart. In open air, the solar radiation as well as the rain and wind contribute to accelerate the degradation process. In the present work the laboratory assisted degradation of clay ceramics incorporated with a granite residue from ornamental stone processing was evaluated by synthetic seawater aggression according to standard procedure. The amount of incorporated residues, up to 10 wt % and the ceramic firing temperature, up to 900°C, were variable conditions statistically analyzed by factorial planning. Degradation wetting-drying tests were conducted up to 6 months. The results showed that the linear shrinkage of the residue-free ceramics do not stabilize during the test period for any firing temperature. By contrast, the residue-incorporated ceramics tend to stabilize after 4 months. In addition, a decrease in water absorption and flexural strength was observed in same speciemens.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 826
Author(s):  
Qiong Wu ◽  
Chenghua Xu ◽  
Yuhao Zheng ◽  
Jie Liu ◽  
Zhiyong Deng ◽  
...  

NiCuMoLaAl mixed oxide catalysts are prepared and applied in the steam reforming of chloroform-ethyl acetate (CHCl3-EA) mixture to syngas in the present work. The pre-introduction of Cl- ions using chloride salts as modifiers aims to improve the chlorine poisoning resistance. Catalytic tests show that KCl modification is obviously advantageous to increase the catalytic life. The destruction of catalyst structure induced by in situ produced HCl and carbon deposits that occurred on acidic sites are two key points for deactivation of reforming catalysts. The presence of Cl− ions gives rise to the formation of an Ni-Cu alloy, which exhibits a synergetic effect on catalyzing reforming along with metallic Ni crystals formed from excess nickel species, and giving an excellent catalytic stability. Less CHCl3 and more steam can also increase the catalytic stable time of KCl-modified NiCuMoLaAl reforming catalyst.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 746
Author(s):  
Jianfeng Lu ◽  
Senfeng Yang ◽  
Gechuanqi Pan ◽  
Jing Ding ◽  
Shule Liu ◽  
...  

Molten chloride salt is recognized as a promising heat transfer and storage medium in concentrating solar power in recent years, but there is a serious lack for thermal property data of molten chloride salts. In this work, local structures and thermal properties for molten chloride salt—including NaCl, MgCl2, and ZnCl2—were precisely simulated by Born–Mayer–Huggins (BMH) potential in a rigid ion model (RIM) and a polarizable ion model (PIM). Compared with experimental data, distances between cations, densities, and heat capacities of molten chloride slats calculated from PIM agree remarkably better than those from RIM. The polarization effect brings an extra contribution to screen large repulsive Coulombic interaction of cation–cation, and then it makes shorter distance between cations, larger density and lower heat capacity. For NaCl, MgCl2, and ZnCl2, PIM simulation deviations of distances between cations are respectively 3.8%, 3.7%, and 0.3%. The deviations of density and heat capacity for NaCl between PIM simulation and experiments are only 0.6% and 2.2%, and those for MgCl2 and ZnCl2 are 0.7–10.7%. As the temperature rises, the distance between cations increases and the structure turns into loose state, so the density and thermal conductivity decrease, while the ionic self-diffusion coefficient increases, which also agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document