Analysis and Assessment of Operation Risk for Power System with Photovoltaic Power Stations

Author(s):  
Shunxiang Ji ◽  
Qi Wang ◽  
Nanmu Ding ◽  
Lei Liang
2021 ◽  
Vol 69 (4) ◽  
pp. 43-49
Author(s):  
Nikolay RUBAN ◽  
◽  
Vladimir RUDNIK ◽  
Igor RAZZHIVIN ◽  
Anton KIEVEC ◽  
...  

Renewable energy sources are being actively penetrated in the global energy sector, with the main growth being achieved by new photovoltaic power stations. At the same time, the influence of photovoltaic power stations on the operation of power systems is known. This is primarily due to the inconstancy of the weather, which leads to a decrease in the output of each specific photovoltaic panel and power station as a whole. To study the effect of partial shading of photovoltaic panels on the parameters of its operation, various models of the current-voltage characteristics of photovoltaic cells are used in the world, while detailed two-diode models show the best results. The use of detailed models allows to get complete information about the processes in a variety of photovoltaic panels of a power station, as well as other elements of it, such as a voltage converter. This makes it possible to assess the impact of these processes on the external power system. However, for detailed modelling of large photovoltaic power stations as part of power systems, it is necessary to use powerful software and hardware systems. Such systems include the Hybrid real-time power system simulator. This simulator is a multiprocessor installation that provides a solution to the aggregate model of the power system through the use of three approaches to modelling: digital, analogue and physical. The article presents the results of experimental studies of software and hardware tools for modelling a photovoltaic power station, developed on the basis of a hybrid approach to modelling electric power systems.


2020 ◽  
Vol 216 ◽  
pp. 01096
Author(s):  
Allaev Kakhraman ◽  
Musinova Gulasal

This article discusses the issues of ensuring the power quality. An analysis of the higher harmonics arising from the operation of photovoltaic power stations is made. The results of experimental research are presented. Based on the measurement and calculation data, time diagrams of changes in the parameters of the electrical system mode for the studied periods of time were constructed.


2020 ◽  
Vol 13 (13) ◽  
pp. 2824-2830 ◽  
Author(s):  
Neeraj Priyadarshi ◽  
Mahajan Sagar Bhaskar ◽  
Sanjeevikumar Padmanaban ◽  
Frede Blaabjerg ◽  
Farooque Azam

2021 ◽  
Vol 11 (2) ◽  
pp. 727 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Young-Gon Kim ◽  
Hae-Sol Lee ◽  
Young-Dae Kim ◽  
Hyun-Rok Cha

In recent years, photovoltaic (PV) power generation has attracted considerable attention as a new eco-friendly and renewable energy generation technology. With the recent development of semiconductor manufacturing technologies, PV power generation is gradually increasing. In this paper, we analyze the types of defects that form in PV power generation panels and propose a method for enhancing the productivity and efficiency of PV power stations by determining the defects of aging PV modules based on their temperature, power output, and panel images. The method proposed in the paper allows the replacement of individual panels that are experiencing a malfunction, thereby reducing the output loss of solar power generation plants. The aim is to develop a method that enables users to immediately check the type of failures among the six failure types that frequently occur in aging PV panels—namely, hotspot, panel breakage, connector breakage, busbar breakage, panel cell overheating, and diode failure—based on thermal images by using the failure detection system. By comparing the data acquired in the study with the thermal images of a PV power station, efficiency is increased by detecting solar module faults in deteriorated photovoltaic power plants.


Sign in / Sign up

Export Citation Format

Share Document