Calculation method of winding loss in high frequency planar transformer

Author(s):  
Xiaohui Wang ◽  
Li Wang ◽  
Ling Mao ◽  
Lifang Yi ◽  
Shanshui Yang
2021 ◽  
Author(s):  
Charles R. Sullivan

<p>A basic procedure for designing a power inductor is presented. Many papers and textbook chapters offer more sophisticated methods, but it is harder to find a clear outline of a basic design process. Studying and practicing a basic design process is useful for beginners to understand the fundamental tradeoffs in design and to build intuition. For more advanced work, the basic design process is useful as it avoids relying on assumptions that might not be valid with, for example, high-frequency loss effects that are ignored in the development of some more sophisticated methods, or that constrain other methods to narrow, specific cases.</p> <p>Two options are outlined: starting with a saturation constraint, and then checking the core/winding loss balance; or, starting by optimizing the core/winding loss balance, and then checking the saturation constraint.</p>


Author(s):  
Feng Fan ◽  
Yaxiong Cao ◽  
Lusheng Jiang ◽  
Yongfeng Lin

A new calculation method of helicopter rotor/fuselage acoustic scattering is developed. Firstly, a CFD analysis model is developed to simulate flow field of the rotor, which is based on the motional embedded grid system and RANS equations, and provides aerodynamic data for rotor noise calculation. Then, FW-H equations are employed to calculate the aeroacoustic characteristics of isolated rotor, and G 1A formulas are applied to calculate the rotor acoustic gradient to provide boundary condition for acoustic scattering. Based on these, the time-domain equivalent source method is applied to calculate acoustic scatter field, and the total acoustic field that considered the fuselage scatter is superposed by isolated rotor acoustics and the scatter one. Finally, the numerical simulations of helicopter main-rotor/fuselage and tail-rotor/fuselage scatter effect are conducted by using the developed models. The results indicate that the helicopter fuselage has important scatter effect on the high frequency acoustics of main rotor and tail rotor, and the acoustic scatter effect become more obvious with the smaller space between the main rotor (tail rotor) and fuselage.


2021 ◽  
Author(s):  
Charles R. Sullivan

<p>A basic procedure for designing a power inductor is presented. Many papers and textbook chapters offer more sophisticated methods, but it is harder to find a clear outline of a basic design process. Studying and practicing a basic design process is useful for beginners to understand the fundamental tradeoffs in design and to build intuition. For more advanced work, the basic design process is useful as it avoids relying on assumptions that might not be valid with, for example, high-frequency loss effects that are ignored in the development of some more sophisticated methods, or that constrain other methods to narrow, specific cases.</p> <p>Two options are outlined: starting with a saturation constraint, and then checking the core/winding loss balance; or, starting by optimizing the core/winding loss balance, and then checking the saturation constraint.</p>


2012 ◽  
Vol 433-440 ◽  
pp. 676-680
Author(s):  
Yue Qin Cao

With the rapid development of computers, communication and multimedia electronic products, application of high quality images is becoming more and more popular. Improvement of image quality is a very important subject at present. Basic on compression technology of static images, this subject raises adaptive quantitative methods for different images, adopts secondary calculation method during quantization, and then gives simulation validation to images by Matlab software. According to the rate of high-frequency and low-frequency of images, adjust quantization table to make the best effort of image compression.


Sign in / Sign up

Export Citation Format

Share Document