helicopter main rotor
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 30)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 33 (1) ◽  
pp. 567-584
Author(s):  
Inamul Hasan ◽  
R. Mukesh ◽  
P. Radha Krishnan ◽  
R. Srinath ◽  
R. B. Dhanya Prakash

2021 ◽  
Vol 11 (24) ◽  
pp. 12097
Author(s):  
Nikos Spyropoulos ◽  
George Papadakis ◽  
John M. Prospathopoulos ◽  
Vasilis A. Riziotis

In this paper, the accuracy of an in-house Actuator Line (AL) model is tested on aeroelastic simulations of a Wind Turbine (WT) rotor and a helicopter Main Rotor (MR) under uniform free-stream flow. For the scope of aeroelastic analyses, the AL model is coupled with an in-house multibody dynamics code in which the blades are modeled as beams. The advantage from the introduction of CFD analysis in rotorcraft aeroelasticity is related to its capability to account in detail for the interaction of the rotor wake with the boundary layer developed on the surrounding bodies. This has proven to be of great importance in order to accurately estimate the aerodynamic forces and thus the corresponding structural loads and deflections of the blades. In wind turbine applications, a good example of the above is the rotor/ground interaction. In helicopter configurations, the interaction of MR with the ground or the fuselage and the interaction of tail rotor with the duct in fenestron configurations are typical examples. Furthermore, CFD aerodynamic analysis is an obvious modeling option in which the above mentioned asset can be combined with the consideration of the mutual interaction of the rotor with the ambient turbulence. A WT rotor operating inside the atmospheric boundary layer under turbulent free-stream flow is such a case. In the paper, AL results are compared against Blade Element Momentum (BEM) and Lifting Line (LL) model results in the case of the WT, whereas LL and measured data are considered in the helicopter cases. Blade loads and deflections are mainly compared as azimuthal variations. In the helicopter MR cases, where comparison is made against experimental data, harmonic analysis of structural loads is shown as well. Overall, AL proves to be as reliable as LL in the canonical cases addressed in this paper in terms of loads and deflections predictions. Therefore, it can be trusted in more complex flow conditions where viscous effects are pronounced.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032096
Author(s):  
V Borisenko ◽  
J Leoro ◽  
A Didenko

Abstract The paper focuses on the helicopter main rotor blade FE model. And the main goal is to prove the feasibility of the helicopter main rotor MBD model in calculations of blade deformation as a result of applied aerodynamic forces. FE model is used as a basis for two different computational methods. A mathematical approach in the MBD based on the Craig-Bampton method on the one hand. And finite element model on the other hand. The results of high-frequency blade rotations are obtained. Calculations of these models are compared in order to determine the best method for modeling a linear-elastic blade. By the results, it is necessary to consider the preloaded state of the blade when using the Craig-Bampton method approach. The comparison of blade nodes displacements at various external conditions for both models are given. The influence of rotor MBS model damping parameters on the amplitude of blade oscillations under sinusoidal action is considered.


Author(s):  
А. Г. Гребеников ◽  
Ю. В. Дьяченко ◽  
В. В. Коллеров ◽  
В. Ю. Коцюба ◽  
И. В. Малков ◽  
...  

The analysis of the design and technological features of the rotor blades of heavy transport helicopters is carried out. The main performance characteristics of heavy helicopters are presented. General requirements to helicopter main rotor blades design and specifications for their production are formulated. The design and force diagram of heavy helicopter main rotor blades is considered. The features of structural materials for the main rotor blades of heavy transport helicopters are marked. The main rotor blades differ in their design due to different approaches to materials, manufacturing and layout of blade elements. The main rotor blades of an all-metal design, for design and technological reasons, are divided into two groups: a frame structure with a tubular steel spar and an aluminum extruded spar. As a result of a number of design and technological measures the service life of the main rotor blade of helicopter Mi-6 was brought from 50 hours to 1500 hours. The principal peculiarity of the steel tubular spar of the main rotor blade of the Mi-26 helicopter is the absence of the shaft lug. The features of mixed design main rotor blades are presented. The method of parametric modeling of helicopter main rotor blades is presented. The application of the three-dimensional parametric models of structural elements in practice of designing and construction enables to perform numerical calculations of aerodynamic and strength characteristics both of separate aggregates, units and details and of the helicopter as a whole by means of the finite element method. The method of parametric modeling of the main rotor blade of the transport helicopter with the computer system CATIA V5 is a modification of the method of integrated designing of the elements of aviation constructions. Parametric master geometry of the main rotor blade is a linear surface, created by basic profiles of the blade. On the basis of parametric master geometry a space distribution model is created that determines the position of axial planes of the power set of the blade for further creation of the blade detail models. Technological flowchart of main rotor blade manufacturing is presented, manufacturing and surface hardening technology of steel tubular spar is considered. The technology of manufacturing and molding the nose part of the blade of the main rotor mixed design. The technological features of slipway assembly-gluing of the main rotor blade are considered, the content of off-slipway work is given.These materials can be useful in theoretical and experimental studies to extend the service life of the rotor blades of Mi-26 helicopters, which are currently in operation in Ukraine.


2021 ◽  
Author(s):  
R. V. Ermakov ◽  
Alexander A. Nikiforov ◽  
O.M. Balaban ◽  
A. A. L’vov ◽  
A. A. Seranova ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 114
Author(s):  
Oleksandr Lytviak ◽  
Vasyl Loginov ◽  
Sergii Komar ◽  
Yevhen Martseniuk

Self-oscillations are one of the common problems in the complex automatic system, that can occur due to the features of the workflow and the design of the governor. The development of digital control systems has made it possible to damp self-oscillations by applying complex control laws. However, for hydromechanical systems, such way is unacceptable due to the design complexity and the governor cost. The objective of this work is to determine the parameters of the hydromechanical free turbine speed controller, ensuring the absence of self-oscillations during ground tests of the turboshaft engine with a hydraulic dynamometer. The TV3-117VM engine (Ukraine) with the NR-3VM regulator pump (Ukraine) was selected as the object of the study. However, self-oscillations can also occur in any modifications of the TV3-117 engine with any NR-3 regulator pump. The results of the research may be of interest to engineers and scientists who investigate the dynamics of automatic control systems for similar engines. The paper analyses the nonlinear features of the empirical characteristics of the FTSC leading to self-oscillations of the engine speed. The authors propose the mathematical model of the automatic control system dynamics, which takes into account all the features of the engine and regulator pump. It is shown that the load characteristics of the water brake and the helicopter main rotor can differ significantly. Research of the dynamic characteristics of the TV3-117VM engine was carried out. The analysis showed a good agreement between the calculation results and the field test results, and made it possible to determine the parameters of the controller, which lead to self-oscillations during test. Two cases are considered. The first case includes ground tests of the engine with a water brake; the second case—flight tests of the engine as part of the helicopter’s power plant. The data obtained make it possible to develop recommendations for adjusting the hydromechanical governor without testing it on the engine.


Vortex ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 101
Author(s):  
Rastra Arif Pradana ◽  
Kris Hariyanto ◽  
Fajar Khanif Rahmawati

At the beginning of operation, a main rotor blade on helicopter is certainly in the best condition. When it gets older, the main rotor blade condition will decrease because of the presence of bent, material fatigue and human error during operation. Based on the background, it is necessary to identify the level of reliability of main rotor blade on the Bell 412 helicopter using the normal distribution method. The research data were the age of components of main rotor blade on Bell 412 helicopter during 27 years.Based on the analysis of calculation of the reliability level, employing the normal distribution method and using Microsoft Excel, the reliability value (R) of all serial numbers of Bell 412 helicopter main rotor blade was 99%, which indicates the reliability of the Bell 412 helicopter main rotor blade is very good.


Author(s):  
A.D. Gardner ◽  
A. Weiss ◽  
J.T. Heineck ◽  
A.D. Overmeyer ◽  
H.R. Spooner ◽  
...  

A well-defined reference set of data for computational fluid dynamics and comprehensive code validation for a scaled helicopter main rotor with boundary layer transition in forward flight is presented. The boundary layer transition was measured using differential infrared thermography (DIT) on the top (suction) side of the NASA/Army “PSP rotor” in the NASA Langley 14-by-22-Foot Subsonic Tunnel. The tests used a FLIR X8500 SLS long-wave infrared camera to observe the three-bladed rotor. The boundary layer transition was detected for forward flight at an advance ratio of 0.3 (115 kt). The measured boundary layer transition positions are consistent with previous measurements and predicted boundary layer transition locations. A method for the analysis of DIT images for a rotor in forward flight is shown and validated based on computational analysis of a pitching airfoil with varying inflow, showing both qualitative and quantitative similarity to experimental data.


Sign in / Sign up

Export Citation Format

Share Document