scholarly journals Study of clusters of defects in low-cost digitally fabricated frequency selective surfaces

Author(s):  
Badredin M. Turki ◽  
Edward A. Parker ◽  
M. Ali Ziai ◽  
John C. Batchelor ◽  
Veronica Sanchez-Romaguera ◽  
...  
2018 ◽  
Vol 115 (52) ◽  
pp. 13210-13215 ◽  
Author(s):  
Syed Abdullah Nauroze ◽  
Larissa S. Novelino ◽  
Manos M. Tentzeris ◽  
Glaucio H. Paulino

The tremendous increase in the number of components in typical electrical and communication modules requires low-cost, flexible and multifunctional sensing, energy harvesting, and communication modules that can readily reconfigure, depending on changes in their environment. Current subtractive manufacturing-based reconfigurable systems offer limited flexibility (limited finite number of discrete reconfiguration states) and have high fabrication cost and time requirements. Thus, this paper introduces an approach to solve the problem by combining additive manufacturing and origami principles to realize tunable electrical components that can be reconfigured over continuous-state ranges from folded (compact) to unfolded (large surface) configurations. Special “bridge-like” structures are introduced along the traces that increase their flexibility, thereby avoiding breakage during folding. These techniques allow creating truly flexible conductive traces that can maintain high conductivity even for large bending angles, further enhancing the states of reconfigurability. To demonstrate the idea, a Miura-Ori pattern is used to fabricate spatial filters—frequency-selective surfaces (FSSs) with dipole resonant elements placed along the fold lines. The electrical length of the dipole elements in these structures changes when the Miura-Ori is folded, which facilitates tunable frequency response for the proposed shape-reconfigurable FSS structure. Higher-order spatial filters are realized by creating multilayer Miura-FSS configurations, which further increase the overall bandwidth of the structure. Such multilayer Miura-FSS structures feature the unprecedented capability of on-the-fly reconfigurability to different specifications (multiple bands, broadband/narrowband bandwidth, wide angle of incidence rejection), requiring neither specialized substrates nor highly complex electronics, holding frames, or fabrication processes.


2006 ◽  
Vol 964 ◽  
Author(s):  
Thomas Kistenmacher ◽  
Shaun Francomacaro ◽  
Ben Brawley ◽  
Ra'id Awadallah ◽  
Paul Vichot ◽  
...  

ABSTRACTA series of frequency-selective surface (FSS) arrays based on nested split-ring triangle resonators have been fabricated using screen printing. A silver-filled polymer thick film (PTF) paste was selected as the active medium for the FSS arrays as it has good compatibility with the various substrates employed and is in itself naturally flexible. Substrates included FR4 boards and polyimide (PI), polyethylene terephthalate (PET) and silicone sheeting. Compared to arrays fabricated from Cu-clad FR4 board, the screen-printed arrays are resonance shifted owing to the magnitude of the dielectric constant and thickness of the various substrates. In addition, the quality factors of the screen-printed arrays are reduced compared to those fabricated from the more conductive Cu resonators. Despite these limitations, screen-printed arrays have considerable potential as components for low-cost flexible and conformal microwave devices.


1988 ◽  
Vol 24 (14) ◽  
pp. 901 ◽  
Author(s):  
A.M.M.A. Allam ◽  
E.A. Parker

Sign in / Sign up

Export Citation Format

Share Document