A 10W IMPATT Diode Amplifier for X-Band Communication Systems

1979 ◽  
Author(s):  
P W Huish ◽  
W Thorpe
1980 ◽  
Author(s):  
Thomas Chen-Chou Ho ◽  
Shiang Fu
Keyword(s):  

Author(s):  
Malipatil Shivashankar A

In this communication the inclined slot loaded rectangular microstrip patch antenna fed by microstripline is presented for modern communication system. The antenna is housed in a volume of 5X3X0.16cm3. The low loss tangent and commercially available modified glass epoxy substrate material is used for the fabrication of the antenna. The design concept is presented. The proposed antenna gives a maximum bandwidth of 20.78% and overall bandwidth of 44.49% with operating range of 8.28 GHz to 12 GHz. The antenna shows broadside and linear radiation characteristics with a peak gain of 7.08 dB. The experimental and simulated results are compared. This antenna may find its applications in X-band range communication systems.


2021 ◽  
Vol 14 (4) ◽  
pp. 046501
Author(s):  
Seiya Kawasaki ◽  
Yuto Ando ◽  
Manato Deki ◽  
Hirotaka Watanabe ◽  
Atsushi Tanaka ◽  
...  

2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Dong ◽  
Xiaping Yu ◽  
Guoqiang Hu

In order to incorporate different communication standards into a single device, a compact quad-band slot antenna is proposed in this paper. The proposed antenna is composed of a dielectric substrate, T-shaped microstrip patch with a circle slot and an inverted L-slot, and a comb-shaped ground on the back of the substrate. By adopting these structures, it can produce four different bands, while maintaining a small size and a simple structure. Furthermore, a prototype of the quad-band antenna is designed and fabricated. The simulated and measured results show that the proposed antenna can operate over the 1.79–2.63 GHz, 3.46–3.97 GHz, 4.92–5.85 GHz, and 7.87–8.40 GHz, which can cover entire PCS (Personal Communications Service, 1.85–1.99 GHz), UMTS (Universal Mobile Telecommunications System, 1.92–2.17 GHz), WCDMA (wideband code-division multiple access, 2.1 GHz), Bluetooth (2.4–2.48 GHz), WiBro (Wireless Broad band access service, 2.3–3.39 GHz), WLAN (Wireless Local Area Networks, 2.4/5.2/5.8 GHz), WiMAX (Worldwide Interoperability for Microwave Access, 2.5/3.5/5.5 GHz), and X-band SATcom applications (7.9~8.4 GHz). The proposed antenna is particularly attractive for mobile devices integrating multiple communication systems.


1973 ◽  
Vol 41 (2) ◽  
pp. 224-229 ◽  
Author(s):  
R. D. Hogg
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document