Comparison of Motor Imagery EEG Classification using Feedforward and Convolutional Neural Network

Author(s):  
Tamas Majoros ◽  
Stefan Oniga
Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Author(s):  
Lie Yang ◽  
Yonghao Song ◽  
Xueyu Jia ◽  
Ke Ma ◽  
Longhan Xie

Author(s):  
Qi Xin ◽  
Shaohao Hu ◽  
Shuaiqi Liu ◽  
Ling Zhao ◽  
Shuihua Wang

As one of the important tools of epilepsy diagnosis, the electroencephalogram (EEG) is noninvasive and presents no traumatic injury to patients. It contains a lot of physiological and pathological information that is easy to obtain. The automatic classification of epileptic EEG is important in the diagnosis and therapeutic efficacy of epileptics. In this article, an explainable graph feature convolutional neural network named WTRPNet is proposed for epileptic EEG classification. Since WTRPNet is constructed by a recurrence plot in the wavelet domain, it can fully obtain the graph feature of the EEG signal, which is established by an explainable graph features extracted layer called WTRP block . The proposed method shows superior performance over state-of-the-art methods. Experimental results show that our algorithm has achieved an accuracy of 99.67% in classification of focal and nonfocal epileptic EEG, which proves the effectiveness of the classification and detection of epileptic EEG.


Sign in / Sign up

Export Citation Format

Share Document