Neighborhood research approach in swarm intelligence for solving the optimization problems

Author(s):  
E.V. Kuliev ◽  
A.N. Dukkardt ◽  
V.V. Kureychik ◽  
A.A. Legebokov
2021 ◽  
Vol 9 (08) ◽  
pp. 673-675
Author(s):  
Kalpana C. Dalwai ◽  

Swarm intelligence refers to a kind of problem-solving ability that emerges in the interactions of simple information-processing units. The concept of a swarm suggests multiplicity, stochasticity, randomness, and messiness. Advancement of technology has led to problems that are complex and more challenging.Swarm intelligence techniques were mostly developed for solving optimization problems.


2021 ◽  
Vol 7 ◽  
pp. e696
Author(s):  
Yousef Qawqzeh ◽  
Mafawez T. Alharbi ◽  
Ayman Jaradat ◽  
Khalid Nazim Abdul Sattar

Background This review focuses on reviewing the recent publications of swarm intelligence algorithms (particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), and the firefly algorithm (FA)) in scheduling and optimization problems. Swarm intelligence (SI) can be described as the intelligent behavior of natural living animals, fishes, and insects. In fact, it is based on agent groups or populations in which they have a reliable connection among them and with their environment. Inside such a group or population, each agent (member) performs according to certain rules that make it capable of maximizing the overall utility of that certain group or population. It can be described as a collective intelligence among self-organized members in certain group or population. In fact, biology inspired many researchers to mimic the behavior of certain natural swarms (birds, animals, or insects) to solve some computational problems effectively. Methodology SI techniques were utilized in cloud computing environment seeking optimum scheduling strategies. Hence, the most recent publications (2015–2021) that belongs to SI algorithms are reviewed and summarized. Results It is clear that the number of algorithms for cloud computing optimization is increasing rapidly. The number of PSO, ACO, ABC, and FA related journal papers has been visibility increased. However, it is noticeably that many recently emerging algorithms were emerged based on the amendment on the original SI algorithms especially the PSO algorithm. Conclusions The major intention of this work is to motivate interested researchers to develop and innovate new SI-based solutions that can handle complex and multi-objective computational problems.


Author(s):  
Ahmed T. Sadiq Al-Obaidi ◽  
Hasanen S. Abdullah ◽  
Zied O. Ahmed

<p>Evolutionary computation and swarm intelligence meta-heuristics are exceptional instances that environment has been a never-ending source of creativeness. The behavior of bees, bacteria, glow-worms, fireflies and other beings have stirred swarm intelligence scholars to create innovative optimization algorithms. This paper proposes the Meerkat Clan Algorithm (MCA) that is a novel swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. This animal shows an exceptional intelligence, tactical organizational skills, and remarkable directional cleverness in its traversal of the desert when searching for food. A Meerkat Clan Algorithm (MCA) proposed to solve the optimization problems through reach the optimal solution by efficient way comparing with another swarm intelligence. Traveling Salesman Problem uses as a case study to measure the capacity of the proposed algorithm through comparing its results with another swarm intelligence. MCA shows its capacity to solve the Traveling Salesman’s Problem. Its dived the solutions group to sub-group depend of meerkat behavior that gives a good diversity to reach an optimal solution. Paralleled with the current algorithms for resolving TSP by swarm intelligence, it has been displayed that the size of the resolved problems could be enlarged by adopting the algorithm proposed here.</p>


2015 ◽  
pp. 1434-1469 ◽  
Author(s):  
Hindriyanto Dwi Purnomo ◽  
Hui-Ming Wee

A new metaheuristic algorithm is proposed. The algorithm integrates the information sharing as well as the evolution operators in the swarm intelligence algorithm and evolutionary algorithm respectively. The basic soccer player movement is used as the analogy to describe the algorithm. The new method has two basic operators; the move off and the move forward. The proposed method elaborates the reproduction process in evolutionary algorithm with the powerful information sharing in the swarm intelligence algorithm. Examples of implementations are provided for continuous and discrete problems. The experiment results reveal that the proposed method has the potential to become a powerful optimization method. As a new method, the proposed algorithm can be enhanced in many different ways such as investigating the parameter setting, elaborating more aspects of the soccer player movement as well as implementing the proposed method to solve various optimization problems.


Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2016 ◽  
pp. 1519-1544 ◽  
Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2021 ◽  
Vol 12 (1) ◽  
pp. 79-93
Author(s):  
Dharmpal Singh

The concept of bio-inspired algorithms is used in real-world problems to search the efficient problem-solving methods. Evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques of metahuristics. In this paper, an effort has been made to propose a modified social spider algorithm to solve global optimization problems in the real world. Social spiders used the foraging strategy, vibrations on the spider web to determine the positions of prey. The selection of vibration, estimated new position and calculation of the fitness function, has been furnished in details way as compared to different previously proposed swarm intelligence algorithms. Moreover, experimental result has been carried out by modified social spider on series of widely-used benchmark problem with four benchmark algorithms. Furthermore, a modified form of the proposed algorithm has superior performance as compared to other state-of-the-art metaheuristics algorithms.


Sign in / Sign up

Export Citation Format

Share Document