Demonstrating a new ink material for aerosol printing conductive traces and custom strain gauges on flexible surfaces

Author(s):  
Dilan Ratnayake ◽  
Alexander Curry ◽  
Kevin Walsh
Author(s):  
Tanja Grobecker-Karl ◽  
Kamran Orujov ◽  
Virgilia Klär ◽  
Matthias Karl

Author(s):  
Giovanni Pio Pucillo ◽  
Alessandro Carrabs ◽  
Stefano Cuomo ◽  
Adam Elliott ◽  
Michele Meo

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjie Yan ◽  
Huei-Ru Fuh ◽  
Yanhui Lv ◽  
Ke-Qiu Chen ◽  
Tsung-Yin Tsai ◽  
...  

AbstractThere is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.


2020 ◽  
Vol 6 (3) ◽  
pp. 196-199
Author(s):  
Alina Carabello ◽  
Constanze Neupetsch ◽  
Michael Werner ◽  
Christian Rotsch ◽  
Welf-Guntram Drossel ◽  
...  

AbstractTo increase learning success in surgical training, physical simulators are supplemented by measurement technology to generate and record objective feedback and error detection. An opportunity to detect fractures following hip stem implantation early can be measurement of occurring strains on bone surface. These strains can be determined while using strain gauges, digital image correlation (DIC) or photoelasticity. In this research strain gauges and DIC were compared regarding their suitability as strain measurement tools for use in physical simulators. Therefore a testing method was described to replicate the implantation of a hip stem. Testing devices modelled on a realistic prosthesis were pressed into prepared porcine femora in a two-step procedure with a material testing machine. The local strains occurring on bone surface were determined using an optical measurement system for DIC and strain gauges. The initial fractures in the tested femora are located medial-anterior in most cases (73,6%). With increasing indentation depth of the test device, the strains on bone surface increase. Comparing the local strains determined by DIC and strain gauges consistencies in curves are noticeable. Maximal determined strains before fracturing amount to 0,69% with strain gauges and 0,75% with DIC. In the range of the fracture gap, strain gradients are determined by using DIC. However the detected surfaces are of low quality caused by gaps and motion artefacts. The results show strains on bone surfaces for early fracture detection are measurable with strain gauges and DIC. DIC is assessed as less suitable compared to strain gauges. Furthermore strain gauges have greater level of integration and economic efficiency, so they are preferred the use in surgical training simulators.


Author(s):  
Stéphanie Quadros Tonelli ◽  
Marcelo Avelar Antunes ◽  
Kênia Maria Soares de Toubes ◽  
Antônio Carlos de Oliveira Miranda ◽  
André Maués Brabo Pereira ◽  
...  

2019 ◽  
Vol 86 (3) ◽  
pp. 175-183
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Robert Kuschmierz ◽  
...  

AbstractIn-situ measurements of the deformation and of the structural dynamical behavior of moving composite structures, such as rotors made of glass fiber reinforced polymers (GFRP), are necessary in order to validate newly developed simulation models. Local methods like strain gauges and fiber Bragg gratings lack spatial resolution, while contactless optical methods like image correlation or speckle interferometry suffer from noise effects in the presence of fast rigid body movements. A novel compact sensor – based on the diffraction grating method – is introduced for spatially and temporally resolved strain measurement. The use of a line camera allows the measurement of vibrations up to several tens of kHz. With a scanning movement, strain fields at submillimeter resolution can be recorded. The use of two diffraction orders and an objective lens reduces cross sensitivities to rigid body movements on the strain measurement by two to three orders of magnitude. A validation on a GFRP probe was conducted in a quasi-static tensile test with an optical extensometer up to 14500 µϵ. Furthermore, a strain measurement on a moving rotor at surface speeds up to 75 m/s was performed and the results were compared with those of strain gauges as a gold standard. The statistical standard deviation was around 10 µϵ and independent of the rotational speed.


Sign in / Sign up

Export Citation Format

Share Document