Multi-channel GPS time transfer and its application to the Polish atomic time scale

Author(s):  
J. Nawrocki ◽  
J. Azoubib ◽  
W. Lewandowski
Keyword(s):  
2012 ◽  
Vol 10 (H16) ◽  
pp. 209-210
Author(s):  
G. Petit ◽  
F. Arias

AbstractWe review the stability and accuracy achieved by the reference atomic time scales TAI and TT(BIPM). We show that they presently are in the low 10−16 in relative value, based on the performance of primary standards, of the ensemble time scale and of the time transfer techniques. We consider how the 1 × 10−16 value could be reached or superseded and which are the present limitations to attain this goal.


2009 ◽  
Vol 5 (H15) ◽  
pp. 220-221
Author(s):  
Gérard Petit

AbstractWe review the stability and accuracy achieved by the reference atomic time scales TAI and TT(BIPM). We show that they presently are at the level of a few 10−16 in relative value, based on the performance of primary standards, of the ensemble time scale and of the time transfer techniques. We consider how the 1 × 10−16 value could be reached or superseded and which are the present limitations to attain this goal.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thayathip Thongtan ◽  
Sivinee Sawatdiaree ◽  
Chalermchon Satirapod

Abstract GNSS signals have been a practical time transfer tool to realise a Coordinated Universal Time (UTC) and set civilian clocks around the world with respect to this atomic time standard. UTC time scale is maintained by the International Bureau of Weights and Measurements (BIPM) adjusted to be close to a time scale based on the Earth’s rotation. In Thailand, the official atomic time clocks are maintained by the National Institute of Metrology Thailand (NIMT) to produce UTC(NIMT) and Thailand standard time which is always 7 hours ahead of UTC(NIMT) because of the time zone differences between Greenwich and Bangkok. National Positioning, Navigation and Timing (PNT) infrastructure comprises of GNSS geodetic receivers uniformly distributed to continually observe GNSS signals, mainly for geodetic survey applications both real-time and post-processing services. NIMT is involved in order to provide time link to UTC and to determine the characteristics of GNSS receiver internal clocks; namely, fractional frequency offset and frequency stabilities by applying the GNSS time transfer techniques of common-view algorithms. Monitored time differences with respect to UTC(NIMT) are achieved from selected 4 ground stations in different parts of the country with observations of 21 days in order to determine the frequency stability at 1-day and 7-day modes. GNSS standard log files; in RINEX format, at these receivers are transformed into a time transfer standard format; CGGTTS, used to compute the time differences between two stations, the fractional frequency offset and the frequency stability. Averaged fractional frequency offsets are 2.8 × 10 − 13 Hertz/Hertz 2.8\times {10^{-13}}\hspace{2.38387pt}\text{Hertz/Hertz} and computed Allan deviation is around 1.5 × 10 − 13 Hertz/Hertz 1.5\times {10^{-13}}\hspace{2.38387pt}\text{Hertz/Hertz} for an averaging time of 1 day. The comparison of the national time scale and receiver clock offsets of every receivers in this national GNSS PNT infrastructure could be accomplished through common-view time transfer using GNSS satellites to maintain the time link of geodetic active control points to UTC as well as to determine receiver internal clock characteristics.


2020 ◽  
pp. 35-38
Author(s):  
S.I. Donchenko ◽  
I.Y. Blinov ◽  
I.B. Norets ◽  
Y.F. Smirnov ◽  
A.A. Belyaev ◽  
...  

The latest changes in the algorithm for the formation of the international atomic time scale TAI are reported in terms of estimating the weights of the clocks involved in the formation of TAI. Studies of the characteristics of the long-term instability of new-generation hydrogen masers based on processing the results of the clock frequency difference with respect to TAI are performed. It has been confirmed that at present, new-generation hydrogen masers show significantly less long-term instability in comparison with quantum frequency standards ofsimilar and other types.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Gérard Petit ◽  
Zhiheng Jiang

We discuss the use of some new time transfer techniques for computing TAI time links. Precise point positioning (PPP) uses GPS dual frequency carrier phase and code measurements to compute the link between a local clock and a reference time scale with the precision of the carrier phase and the accuracy of the code. The time link between any two stations can then be computed by a simple difference. We show that this technique is well adapted and has better short-term stability than other techniques used in TAI. We present a method of combining PPP and two-way time transfer that takes advantage of the qualities of each technique, and shows that it would bring significant improvement to TAI links.


2011 ◽  
Vol 9 ◽  
pp. 1-7 ◽  
Author(s):  
D. Piester ◽  
M. Rost ◽  
M. Fujieda ◽  
T. Feldmann ◽  
A. Bauch

Abstract. In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at the Physikalisch-Technische Bundesanstalt (PTB) without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 40 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of Coordinated Universal Time UTC. Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.


1972 ◽  
Vol 47 ◽  
pp. 395-401
Author(s):  
L. V. Morrison

Analyses of occultation timings show that periodic correction terms with semi-amplitude as great as 0.″18 arise from corrections required to the empirical constants of the Brown/Eckert theory. Using the atomic time-scale, some of the occultation data have been used to determine a correction of – 30 ± 16″/cy2 to Spencer Jones' value for the secular acceleration of the Moon. In the light of this correction, and previous determinations, attention is drawn to the possible weakness of Spencer Jones' value, which is not reflected in his quoted error of ± 1″/cy2. Further analyses of 50000 occultations observed since 1943 promise to reveal more accurately-determined corrections.


Author(s):  
B. Gaigerov ◽  
N. Koshelyaevsky ◽  
S. Pushkin ◽  
V. Tatarenkov ◽  
G. Yolkin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document