A high-capacitance ratio implanted MMIC varactor for broadband phase shifters and tuners

Author(s):  
G.W. Eldridge ◽  
M.C. Driver ◽  
M.M. Sopira ◽  
T.J. Smith
Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.


Author(s):  
Qin Shen ◽  
Ioannis Chasiotis ◽  
N. Scott Barker

An innovative RF-MEMS varactor has been developed for use in distributed RF-MEMS circuits such as phase shifters and tunable matching networks where the capacitance ratio between on- and off- state must be limited to 2–10. By fabricating standoffs on the bottom side of the beam, this device eliminates the intimate contact between the FR-MEMS and dielectric, that is found in typical RF-MEMS beam capacitive switches. These standoffs limit the range of motion, allowing the capacitance ratio to be set, and also greatly reduces the contact area thus preventing stiction from occurring. The RF-MEMS switch has been fabricated with initial measurements demonstrating a capacitance ratio of 2.5. Preliminary reliability testing results demonstrate that this RF-MEMS design is very robust.


Sign in / Sign up

Export Citation Format

Share Document