High-Capacitance-Ratio Warped-Beam Capacitive MEMS Switch Designs

2010 ◽  
Vol 19 (3) ◽  
pp. 538-547 ◽  
Author(s):  
Reena Al-Dahleh ◽  
Raafat R Mansour
Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 390 ◽  
Author(s):  
Ke Han ◽  
Xubing Guo ◽  
Stewart Smith ◽  
Zhongliang Deng ◽  
Wuyu Li

This paper proposes a novel high-capacitance-ratio radio frequency micro-electromechanical systems (RF MEMS) switch. The proposed RF MEMS mainly consists of serpentine flexure MEMS metallic beam, comprised of coplanar waveguide (CPW) transmission line, dielectric and metal-insulator-metal (MIM) floating metallic membrane. Comparing the proposed high-capacitance-ratio MEMS switch with the ones in available literature, an acceptable insertion loss insulation, acceptable response time and high capacitance ratio (383.8) are achieved.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hatem Samaali ◽  
Fehmi Najar ◽  
Slim Choura

We study a capacitive MEMS switch composed of two clamped-clamped exible microbeams. We first develop a mathematical model for the MEMS switch where the upper microbeam represents the ground transmission line and the lower one represents the central transmission line. An electrostatic force is applied between the two microbeams to yield the switch to its ON and OFF states. We derive the equations of motion of the system and associated boundary conditions and solve the static and dynamic problems using the differential quadratic method. We show that using only nine grid points gives relatively accurate results when compared to those obtained using FEM. We also examine the transient behavior of the microswitch and obtain results indicating that subsequent reduction in actuation voltage, switching time, and power consumption are expected along with relatively good RF performances. ANSYS HFSS simulator is used in this paper to extract the RF characteristics of the microswitch. HFSS simulation results show that the insertion loss is as low as −0.31 dB and that the return loss is better than −12.41 dB at 10 GHz in the ON state. At the OFF state, the isolation is lower than −23 dB in the range of 10 to 50 GHz.


2008 ◽  
Vol 18 (9) ◽  
pp. 599-601 ◽  
Author(s):  
Shumin Zhang ◽  
Wansheng Su ◽  
Mona Zaghloul ◽  
Brian Thibeault

2016 ◽  
Vol 17 (3) ◽  
pp. 129-133 ◽  
Author(s):  
Rajesh Saha ◽  
Santanu Maity ◽  
Ngasepam Monica Devi ◽  
Chandan Tilak Bhunia

Sign in / Sign up

Export Citation Format

Share Document