Large deviation solution for cooperative spectrum sensing with diversity analysis

Author(s):  
Dongliang Duan ◽  
Liuqing Yang ◽  
Louis L. Scharf ◽  
Shuguang Cui
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
S. Tephillah ◽  
J. Martin Leo Manickam

Security is a pending challenge in cooperative spectrum sensing (CSS) as it employs a common channel and a controller. Spectrum sensing data falsification (SSDF) attacks are challenging as different types of attackers use them. To address this issue, the sifting and evaluation trust management algorithm (SETM) is proposed. The necessity of computing the trust for all the secondary users (SUs) is eliminated based on the use of the first phase of the algorithm. The second phase is executed to differentiate the random attacker and the genuine SUs. This reduces the computation and overhead costs. Simulations and complexity analyses have been performed to prove the efficiency and appropriateness of the proposed algorithm for combating SSDF attacks.


2021 ◽  
Vol 11 (10) ◽  
pp. 4440
Author(s):  
Youheng Tan ◽  
Xiaojun Jing

Cooperative spectrum sensing (CSS) is an important topic due to its capacity to solve the issue of the hidden terminal. However, the sensing performance of CSS is still poor, especially in low signal-to-noise ratio (SNR) situations. In this paper, convolutional neural networks (CNN) are considered to extract the features of the observed signal and, as a consequence, improve the sensing performance. More specifically, a novel two-dimensional dataset of the received signal is established and three classical CNN (LeNet, AlexNet and VGG-16)-based CSS schemes are trained and analyzed on the proposed dataset. In addition, sensing performance comparisons are made between the proposed CNN-based CSS schemes and the AND, OR, majority voting-based CSS schemes. The simulation results state that the sensing accuracy of the proposed schemes is greatly improved and the network depth helps with this.


Sign in / Sign up

Export Citation Format

Share Document