An Electronic Tattoo based Wireless Body Area Network (ET-WBAN) to conform IEEE 802.15.6: A Review and Proposal

Author(s):  
Shilpa Vikas Shinde ◽  
S. S. Sonavane
2020 ◽  
Vol 150 ◽  
pp. 131-143 ◽  
Author(s):  
Fahim Niaz ◽  
Muhammad Khalid ◽  
Zahid Ullah ◽  
Nauman Aslam ◽  
Mohsin Raza ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 278
Author(s):  
Shilpa Vikas Shinde ◽  
Dr. Santosh S. Sonavane

Wireless body area network (WBAN) is a special type of wireless sensor network. It consists of sensors mounted on a human body to measure important body parameters. WBAN network uses different technologies such as IEEE 802.11, IEEE 802.15.4 and IEEE 802.15.6. In this paper, research outcomes focused on WBAN architecture design and performance analysis in a simulation environment for different routing protocols are done for IEEE 802.15.6. A comparative report is prepared for WBAN technology. Routing protocols are compared with each other based on energy consumption, throughput, and delay. For simulation purposes, a sensor network is designed by placing three sensors in a single hop star topology with a single central hub. The test run was successfully carried out to check the network configuration. A performance of three routing protocols for WBAN wireless technologies is investigated. These three routing protocols include AODV (Ad hoc On-Demand Distance Vector routing), DSDV (Destination Sequenced –Distance Vector routing) and DSR (Dynamic Source Routing). In three sets of simulation, the effect of various routing protocols on throughput, delay, and the energy consumption is calculated by increasing packet rate up to 2000 Kbps with an increment of 250 Kbps. Simulation results have shown that WBAN with AODV routing protocol is the most suitable to reduce power consumption and delay, and to increase throughput. Detailed analysis is discussed in the paper.  


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Fasee Ullah ◽  
Abdul Hanan Abdullah ◽  
Muhammad Qasim Jan ◽  
Kashif Naseer Qureshi

In Wireless Body Area Network (WBAN), various biomedical sensors (BMSs) are deployed to monitor various vital signs of a patient for detecting the abnormality of the vital signs. These BMSs inform the medical staff in advance before the patient’s life goes into a threatening situation. In WBAN, routing layer has the same challenges as generally seen in WSN, but the unique requirements of WBANs need to be addressed by the novel routing mechanisms quite differently from the routing mechanism in Wireless Sensor Networks (WSNs). The slots allocation to emergency and nonemergency patient’s data is one of the challenging issues in IEEE 802.15.4 and IEEE 802.15.6 MAC Superframe structures. In the similar way, IEEE 802.15.4 and IEEE 802.15.6 PHY layers have also unique constraints to modulate the various vital signs of patient data into continuous and discrete forms. Numerous research contributions have been made for addressing these issues of the aforementioned three layers in WBAN. Therefore, this paper presents a cross-layer design structure of WBAN with various issues and challenges. Moreover, it also presents a detail review of the existing cross-layer protocols in the WBAN domain by discussing their strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document