Machine Learning Approach for Loop Unrolling Factor Prediction in High Level Synthesis

Author(s):  
Georgios Zacharopoulos ◽  
Andrea Barbon ◽  
Giovanni Ansaloni ◽  
Laura Pozzi
2020 ◽  
Author(s):  
Mario Lovric ◽  
Kristina Pavlović ◽  
Matej Vuković ◽  
Stuart K. Grange ◽  
Michael Haberl ◽  
...  

During March, 2020, most European countries implemented lockdowns to restrict the transmission of SARS-CoV-2, the virus which causes COVID-19 through their populations. These restrictions had positive impacts for air quality due to a dramatic reduction of economic activity and emissions. In this work, a machine learning approach was designed and implemented to analyze local air quality improvements during the COVID-19 lockdown in Graz, Austria. The machine learning approach was used as a robust alternative to simple, historical measurement comparisons for various individual pollutants. Concentrations of NO2 (nitrogen dioxide), PM10, O3 (ozone) and Ox (total oxidant) were selected from five measurement sites in Graz and were set as target variables for random forest regression models to predict their expected values during the city's lockdown period. The true vs. expected difference is presented here as an indicator of true pollution during the lockdown. The machine learning models showed a high level of generalization for predicting the concentrations. Therefore, the approach was suitable for analyzing reductions in pollution concentrations. Results on the validation set showed very good performance for Ox and NO2 when compared to PM10 and O3. The analysis indicated that the city’s average concentration reductions for the lockdown period were: -36.9 to -41.6%, and -6.6 to -14.2% for NO2 and PM10, respectively. However, an increase of 11.6 to 33.8% for O3 was estimated. The reduction in pollutant concentration, especially NO2 can be explained by significant drops in traffic-flows during the lockdown period (-51.6 to -43.9%). The results presented give a real-world example of what pollutant concentration reductions can be achieved by reducing traffic-flows and other economic activities.


2020 ◽  
Author(s):  
Mario Lovric ◽  
Kristina Pavlović ◽  
Matej Vuković ◽  
Stuart K. Grange ◽  
Michael Haberl ◽  
...  

During March, 2020, most European countries implemented lockdowns to restrict the transmission of SARS-CoV-2, the virus which causes COVID-19 through their populations. These restrictions had positive impacts for air quality due to a dramatic reduction of economic activity and emissions. In this work, a machine learning approach was designed and implemented to analyze local air quality improvements during the COVID-19 lockdown in Graz, Austria. The machine learning approach was used as a robust alternative to simple, historical measurement comparisons for various individual pollutants. Concentrations of NO2 (nitrogen dioxide), PM10, O3 (ozone) and Ox (total oxidant) were selected from five measurement sites in Graz and were set as target variables for random forest regression models to predict their expected values during the city's lockdown period. The true vs. expected difference is presented here as an indicator of true pollution during the lockdown. The machine learning models showed a high level of generalization for predicting the concentrations. Therefore, the approach was suitable for analyzing reductions in pollution concentrations. Results on the validation set showed very good performance for Ox and NO2 when compared to PM10 and O3. The analysis indicated that the city’s average concentration reductions for the lockdown period were: -36.9 to -41.6%, and -6.6 to -14.2% for NO2 and PM10, respectively. However, an increase of 11.6 to 33.8% for O3 was estimated. The reduction in pollutant concentration, especially NO2 can be explained by significant drops in traffic-flows during the lockdown period (-51.6 to -43.9%). The results presented give a real-world example of what pollutant concentration reductions can be achieved by reducing traffic-flows and other economic activities.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document