scholarly journals The KIT Robo-kitchen data set for the evaluation of view-based activity recognition systems

Author(s):  
Lukas Rybok ◽  
Simon Friedberger ◽  
Uwe D. Hanebeck ◽  
Rainer Stiefelhagen
2017 ◽  
Vol 14 (4) ◽  
pp. 172988141770907 ◽  
Author(s):  
Hanbo Wu ◽  
Xin Ma ◽  
Zhimeng Zhang ◽  
Haibo Wang ◽  
Yibin Li

Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras greatly boost the performance of activity recognition. However, due to some practical difficulties, the publicly available RGB-D data sets are not sufficiently large for benchmarking when considering the diversity of their activities, subjects, and background. This severely affects the applicability of complicated learning-based recognition approaches. To address the issue, this article provides a large-scale RGB-D activity data set by merging five public RGB-D data sets that differ from each other on many aspects such as length of actions, nationality of subjects, or camera angles. This data set comprises 4528 samples depicting 7 action categories (up to 46 subcategories) performed by 74 subjects. To verify the challengeness of the data set, three feature representation methods are evaluated, which are depth motion maps, spatiotemporal depth cuboid similarity feature, and curvature space scale. Results show that the merged large-scale data set is more realistic and challenging and therefore more suitable for benchmarking.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3434 ◽  
Author(s):  
Nattaya Mairittha ◽  
Tittaya Mairittha ◽  
Sozo Inoue

Labeling activity data is a central part of the design and evaluation of human activity recognition systems. The performance of the systems greatly depends on the quantity and “quality” of annotations; therefore, it is inevitable to rely on users and to keep them motivated to provide activity labels. While mobile and embedded devices are increasingly using deep learning models to infer user context, we propose to exploit on-device deep learning inference using a long short-term memory (LSTM)-based method to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. To enable us to perform evaluations, we conduct the experiments with two conditional methods. We compare the proposed method showing estimated activities using on-device deep learning inference with the traditional method showing sentences without estimated activities through smartphone notifications. By evaluating with the dataset gathered, the results show our proposed method has improvements in both data quality (i.e., the performance of a classification model) and data quantity (i.e., the number of data collected) that reflect our method could improve activity data collection, which can enhance human activity recognition systems. We discuss the results, limitations, challenges, and implications for on-device deep learning inference that support activity data collection. Also, we publish the preliminary dataset collected to the research community for activity recognition.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 879 ◽  
Author(s):  
Uwe Köckemann ◽  
Marjan Alirezaie ◽  
Jennifer Renoux ◽  
Nicolas Tsiftes ◽  
Mobyen Uddin Ahmed ◽  
...  

As research in smart homes and activity recognition is increasing, it is of ever increasing importance to have benchmarks systems and data upon which researchers can compare methods. While synthetic data can be useful for certain method developments, real data sets that are open and shared are equally as important. This paper presents the E-care@home system, its installation in a real home setting, and a series of data sets that were collected using the E-care@home system. Our first contribution, the E-care@home system, is a collection of software modules for data collection, labeling, and various reasoning tasks such as activity recognition, person counting, and configuration planning. It supports a heterogeneous set of sensors that can be extended easily and connects collected sensor data to higher-level Artificial Intelligence (AI) reasoning modules. Our second contribution is a series of open data sets which can be used to recognize activities of daily living. In addition to these data sets, we describe the technical infrastructure that we have developed to collect the data and the physical environment. Each data set is annotated with ground-truth information, making it relevant for researchers interested in benchmarking different algorithms for activity recognition.


2020 ◽  
Vol 7 ◽  
Author(s):  
James Garforth ◽  
Barbara Webb

Forests present one of the most challenging environments for computer vision due to traits, such as complex texture, rapidly changing lighting, and high dynamicity. Loop closure by place recognition is a crucial part of successfully deploying robotic systems to map forests for the purpose of automating conservation. Modern CNN-based place recognition systems like NetVLAD have reported promising results, but the datasets used to train and test them are primarily of urban scenes. In this paper, we investigate how well NetVLAD generalizes to forest environments and find that it out performs state of the art loop closure approaches. Finally, integrating NetVLAD with ORBSLAM2 and evaluating on a novel forest data set, we find that, although suitable locations for loop closure can be identified, the SLAM system is unable to resolve matched places with feature correspondences. We discuss additional considerations to be addressed in future to deal with this challenging problem.


Sign in / Sign up

Export Citation Format

Share Document