scholarly journals Open-Source Data Collection and Data Sets for Activity Recognition in Smart Homes

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 879 ◽  
Author(s):  
Uwe Köckemann ◽  
Marjan Alirezaie ◽  
Jennifer Renoux ◽  
Nicolas Tsiftes ◽  
Mobyen Uddin Ahmed ◽  
...  

As research in smart homes and activity recognition is increasing, it is of ever increasing importance to have benchmarks systems and data upon which researchers can compare methods. While synthetic data can be useful for certain method developments, real data sets that are open and shared are equally as important. This paper presents the E-care@home system, its installation in a real home setting, and a series of data sets that were collected using the E-care@home system. Our first contribution, the E-care@home system, is a collection of software modules for data collection, labeling, and various reasoning tasks such as activity recognition, person counting, and configuration planning. It supports a heterogeneous set of sensors that can be extended easily and connects collected sensor data to higher-level Artificial Intelligence (AI) reasoning modules. Our second contribution is a series of open data sets which can be used to recognize activities of daily living. In addition to these data sets, we describe the technical infrastructure that we have developed to collect the data and the physical environment. Each data set is annotated with ground-truth information, making it relevant for researchers interested in benchmarking different algorithms for activity recognition.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 825 ◽  
Author(s):  
Fadi Al Machot ◽  
Mohammed R. Elkobaisi ◽  
Kyandoghere Kyamakya

Due to significant advances in sensor technology, studies towards activity recognition have gained interest and maturity in the last few years. Existing machine learning algorithms have demonstrated promising results by classifying activities whose instances have been already seen during training. Activity recognition methods based on real-life settings should cover a growing number of activities in various domains, whereby a significant part of instances will not be present in the training data set. However, to cover all possible activities in advance is a complex and expensive task. Concretely, we need a method that can extend the learning model to detect unseen activities without prior knowledge regarding sensor readings about those previously unseen activities. In this paper, we introduce an approach to leverage sensor data in discovering new unseen activities which were not present in the training set. We show that sensor readings can lead to promising results for zero-shot learning, whereby the necessary knowledge can be transferred from seen to unseen activities by using semantic similarity. The evaluation conducted on two data sets extracted from the well-known CASAS datasets show that the proposed zero-shot learning approach achieves a high performance in recognizing unseen (i.e., not present in the training dataset) new activities.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1779 ◽  
Author(s):  
Hans W. Guesgen

Activity recognition plays a central role in many sensor-based applications, such as smart homes for instance. Given a stream of sensor data, the goal is to determine the activities that triggered the sensor data. This article shows how spatial information can be used to improve the process of recognizing activities in smart homes. The sensors that are used in smart homes are in most cases installed in fixed locations, which means that when a particular sensor is triggered, we know approximately where the activity takes place. However, since different sensors may be involved in different occurrences of the same type of activity, the set of sensors associated with a particular activity is not precisely defined. In this article, we use rough sets rather than standard sets to denote the sensors involved in an activity to model, which enables us to deal with this imprecision. Using publicly available data sets, we will demonstrate that rough sets can adequately capture useful information to assist with the activity recognition process. We will also show that rough sets lend themselves to creating Explainable Artificial Intelligence (XAI).


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2021 ◽  
Vol 4 (1) ◽  
pp. 251524592092800
Author(s):  
Erin M. Buchanan ◽  
Sarah E. Crain ◽  
Ari L. Cunningham ◽  
Hannah R. Johnson ◽  
Hannah Stash ◽  
...  

As researchers embrace open and transparent data sharing, they will need to provide information about their data that effectively helps others understand their data sets’ contents. Without proper documentation, data stored in online repositories such as OSF will often be rendered unfindable and unreadable by other researchers and indexing search engines. Data dictionaries and codebooks provide a wealth of information about variables, data collection, and other important facets of a data set. This information, called metadata, provides key insights into how the data might be further used in research and facilitates search-engine indexing to reach a broader audience of interested parties. This Tutorial first explains terminology and standards relevant to data dictionaries and codebooks. Accompanying information on OSF presents a guided workflow of the entire process from source data (e.g., survey answers on Qualtrics) to an openly shared data set accompanied by a data dictionary or codebook that follows an agreed-upon standard. Finally, we discuss freely available Web applications to assist this process of ensuring that psychology data are findable, accessible, interoperable, and reusable.


2017 ◽  
Vol 9 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Amelie Driemel ◽  
Eberhard Fahrbach ◽  
Gerd Rohardt ◽  
Agnieszka Beszczynska-Möller ◽  
Antje Boetius ◽  
...  

Abstract. Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi:10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data – the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141770907 ◽  
Author(s):  
Hanbo Wu ◽  
Xin Ma ◽  
Zhimeng Zhang ◽  
Haibo Wang ◽  
Yibin Li

Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras greatly boost the performance of activity recognition. However, due to some practical difficulties, the publicly available RGB-D data sets are not sufficiently large for benchmarking when considering the diversity of their activities, subjects, and background. This severely affects the applicability of complicated learning-based recognition approaches. To address the issue, this article provides a large-scale RGB-D activity data set by merging five public RGB-D data sets that differ from each other on many aspects such as length of actions, nationality of subjects, or camera angles. This data set comprises 4528 samples depicting 7 action categories (up to 46 subcategories) performed by 74 subjects. To verify the challengeness of the data set, three feature representation methods are evaluated, which are depth motion maps, spatiotemporal depth cuboid similarity feature, and curvature space scale. Results show that the merged large-scale data set is more realistic and challenging and therefore more suitable for benchmarking.


2017 ◽  
Vol 44 (2) ◽  
pp. 203-229 ◽  
Author(s):  
Javier D Fernández ◽  
Miguel A Martínez-Prieto ◽  
Pablo de la Fuente Redondo ◽  
Claudio Gutiérrez

The publication of semantic web data, commonly represented in Resource Description Framework (RDF), has experienced outstanding growth over the last few years. Data from all fields of knowledge are shared publicly and interconnected in active initiatives such as Linked Open Data. However, despite the increasing availability of applications managing large-scale RDF information such as RDF stores and reasoning tools, little attention has been given to the structural features emerging in real-world RDF data. Our work addresses this issue by proposing specific metrics to characterise RDF data. We specifically focus on revealing the redundancy of each data set, as well as common structural patterns. We evaluate the proposed metrics on several data sets, which cover a wide range of designs and models. Our findings provide a basis for more efficient RDF data structures, indexes and compressors.


Author(s):  
Liah Shonhe

The main focus of the study was to explore the practices of open data sharing in the agricultural sector, including establishing the research outputs concerning open data in agriculture. The study adopted a desktop research methodology based on literature review and bibliographic data from WoS database. Bibliometric indicators discussed include yearly productivity, most prolific authors, and enhanced countries. Study findings revealed that research activity in the field of agriculture and open access is very low. There were 36 OA articles and only 6 publications had an open data badge. Most researchers do not yet embrace the need to openly publish their data set despite the availability of numerous open data repositories. Unfortunately, most African countries are still lagging behind in management of agricultural open data. The study therefore recommends that researchers should publish their research data sets as OA. African countries need to put more efforts in establishing open data repositories and implementing the necessary policies to facilitate OA.


2019 ◽  
Vol 38 (2) ◽  
pp. 293-307
Author(s):  
Po-Yen Chen

Purpose This study attempts to use a new source of data collection from open government data sets to identify potential academic social networks (ASNs) and defines their collaboration patterns. The purpose of this paper is to propose a direction that may advance our current understanding on how or why ASNs are formed or motivated and influence their research collaboration. Design/methodology/approach This study first reviews the open data sets in Taiwan, which is ranked as the first state in Global Open Data Index published by Open Knowledge Foundation to select the data sets that expose the government’s R&D activities. Then, based on the theory review of research collaboration, potential ASNs in those data sets are identified and are further generalized as various collaboration patterns. A research collaboration framework is used to present these patterns. Findings Project-based social networks, learning-based social networks and institution-based social networks are identified and linked to various collaboration patterns. Their collaboration mechanisms, e.g., team composition, motivation, relationship, measurement, and benefit-cost, are also discussed and compared. Originality/value In traditional, ASNs have usually been known as co-authorship networks or co-inventorship networks due to the limitation of data collection. This study first identifies some ASNs that may be formed before co-authorship networks or co-inventorship networks are formally built-up, and may influence the outcomes of research collaborations. These information allow researchers to deeply dive into the structure of ASNs and resolve collaboration mechanisms.


BMJ Open ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. e011784 ◽  
Author(s):  
Anisa Rowhani-Farid ◽  
Adrian G Barnett

ObjectiveTo quantify data sharing trends and data sharing policy compliance at the British Medical Journal (BMJ) by analysing the rate of data sharing practices, and investigate attitudes and examine barriers towards data sharing.DesignObservational study.SettingThe BMJ research archive.Participants160 randomly sampled BMJ research articles from 2009 to 2015, excluding meta-analysis and systematic reviews.Main outcome measuresPercentages of research articles that indicated the availability of their raw data sets in their data sharing statements, and those that easily made their data sets available on request.Results3 articles contained the data in the article. 50 out of 157 (32%) remaining articles indicated the availability of their data sets. 12 used publicly available data and the remaining 38 were sent email requests to access their data sets. Only 1 publicly available data set could be accessed and only 6 out of 38 shared their data via email. So only 7/157 research articles shared their data sets, 4.5% (95% CI 1.8% to 9%). For 21 clinical trials bound by the BMJ data sharing policy, the per cent shared was 24% (8% to 47%).ConclusionsDespite the BMJ's strong data sharing policy, sharing rates are low. Possible explanations for low data sharing rates could be: the wording of the BMJ data sharing policy, which leaves room for individual interpretation and possible loopholes; that our email requests ended up in researchers spam folders; and that researchers are not rewarded for sharing their data. It might be time for a more effective data sharing policy and better incentives for health and medical researchers to share their data.


Sign in / Sign up

Export Citation Format

Share Document